首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the effects of the El Niño-Southern Oscillation (ENSO) on the annual maximum flood (AMF) and volume over threshold (VOT) in two major neighbouring river basins in southwest Iran are investigated. The basins are located upstream of the Dez and Karun-I dams and cover over 40?000 km2 in total area. The effects of ENSO on the frequency, magnitude and severity (frequency times magnitude) of flood characteristics over the March–April period were analysed. ENSO indices were also correlated with both AMF and VOT. The results indicate that, in the Dez and Karun basins, the El Niño phenomenon intensifies March–April floods compared with neutral conditions. The opposite is true in La Niña conditions. The degree of the effect is more intense in the El Niño period.  相似文献   

3.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

The summer precipitation (June–September) in the source region of the Yellow River accounts for about 70% of the annual total, playing an important role in water availability. This study divided the source region of the Yellow River into homogeneous zones based on precipitation variability using cluster analysis. Summer precipitation trends and teleconnections with global sea-surface temperatures (SST) and the Southern Oscillation Index (SOI) from 1961 to 2010 were investigated by Mann-Kendall test and Pearson product-moment correlation analysis. The results show that the northwest part (Zone 1) had a non-significantly increasing trend, and the middle and southeast parts (zones 2 and 3) that receive the most precipitation displayed a statistically significant decreasing trend for summer precipitation. The summer precipitation in the whole region showed statistically significant negative correlations with the central Pacific SST for 0–4 month lag and with the Southern Indian and Atlantic oceans SST for 5–8 month lag. Analyses of sub-regions reveal intricate and complex correlations with different SST areas that further explain the summer precipitation variability. The SOI had significant positive correlations, mainly for 0–2 months lag, with summer precipitation in the source region of the Yellow River. It is seen that El Niño Southern Oscillation (ENSO) events have an influence on summer precipitation, and the predominant negative correlations indicate that higher SST in equatorial Pacific areas corresponding to El Niño coincides with less summer precipitation in the source region of the Yellow River.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

5.
To investigate stable isotopic variability of precipitation in Singapore, we continuously analysed the δ‐value of individual rain events from November 2014 to August 2017 using an online system composed of a diffusion sampler coupled to Cavity Ring‐Down Spectrometer. Over this period, the average value (δ18OAvg), the lowest value (δ18OLow), and the initial value (δ18OInit) varied significantly, ranging from ?0.45 to ?15.54‰, ?0.9 to ?17.65‰, and 0 to ?13.13‰, respectively. All 3 values share similar variability, and events with low δ18OLow and δ18OAvg values have low δ18OInit value. Individual events have limited intraevent variability in δ‐value (Δδ) with the majority having a Δδ below 4‰. Correlation of δ18OLow and δ18OAvg with δ18OInit is much higher than that with Δδ, suggesting that convective activities prior to events have more control over δ‐value than on‐site convective activities. The d‐excess of events also varies considerably in response to the seasonal variation in moisture sources. A 2‐month running mean analysis of δ18O reveals clear seasonal and interannual variability. Seasonal variability is associated with the meridional movement of the Intertropical Convergence Zone and evolution of the Asian monsoon. El Niño–Southern Oscillation is a likely driver of interannual variability. During 2015–2016, the strongest El Niño year in recorded history, the majority of events have a δ18O value higher than the weighted average δ18O of daily precipitation. δ18O shows a positive correlation with outgoing longwave radiation in the western Pacific and the Asian monsoon region, and also with Oceanic Niño Index. During El Niño, the convection centre shifts eastward to the central/eastern Pacific, weakening convective activities in Southeast Asia. Our study shows that precipitation δ‐value contains information about El Niño–Southern Oscillation and the Intertropical Convergence Zone, which has a significant implication for the interpretation of water isotope data and understanding of hydrological processes in tropical regions.  相似文献   

6.
T. Furuichi  Z. Win  R. J. Wasson 《水文研究》2009,23(11):1631-1641
Among the large rivers rising on the Tibetan Plateau and adjacent high mountains, the discharge and suspended sediment load of the Ayeyarwady (Irrawaddy) River are the least well known. Data collected between 1969 and 1996 at Pyay (Prome) are analysed to provide the best available modern estimate of discharge (379 ± 47 × 109 m3/year) and suspended sediment load (325 ± 57 × 106 t/year) for the river upstream of the delta head. A statistical comparison with data collected in the nineteenth century (1871 to 1879) shows discharge has significantly decreased in the last ~100 years. Regression and correlation analyses between discharge in the modern period and indices of El Niño–Southern Oscillation (ENSO) show a relationship. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The last 2014‐16 El Niño event was among the three strongest episodes on record. El Niño considerably changes annual and seasonal precipitation across the tropics. Here, we present a unique stable isotope data set of daily precipitation collected in Costa Rica prior to, during, and after El Niño 2014‐16, in combination with Lagrangian moisture source and precipitation anomaly diagnostics. δ2H composition ranged from ‐129.4 to +18.1 (‰) while δ18O ranged from ‐17.3 to +1.0 (‰). No significant difference was observed among δ18O (P=0.186) and δ2H (P=0.664) mean annual compositions. However, mean annual d‐excess showed a significant decreasing trend (from +13.3 to +8.7 ‰) (P<0.001) with values ranging from +26.6 to ‐13.9 ‰ prior to and during the El Niño evolution. The latter decrease in d‐excess can be partly explained by an enhanced moisture flux convergence across the southeastern Caribbean Sea coupled with moisture transport from northern South America by means of an increased Caribbean Low Level Jet regime. During 2014‐15, precipitation deficit across the Pacific domain averaged 46% resulting in a very severe drought; while a 94% precipitation surplus was observed in the Caribbean domain. Understanding these regional moisture transport mechanisms during a strong El Niño event may contribute to a) better understanding of precipitation anomalies in the tropics and b) re‐evaluate past stable isotope interpretations of ENSO events in paleoclimatic archives within the Central America region.  相似文献   

8.
In order to analyse the long‐term trend of precipitation in the Asian Pacific FRIEND region, records from 30 river basins to represent the large range of climatic and hydrological characteristics in the study area are selected. The long‐term trend in precipitation time series and its association with the southern oscillation index (SOI) series are investigated. Application of the nonparametric Mann–Kendall test for 30 precipitation time series has shown that only four of these 30 time series have a long‐term trend at the 5% level of significance. Nevertheless, most of the records tend to decrease over the last several decades. The dataset is further divided geographically into northern, middle, and southern zones, with 20°N and 20°S latitude as the dividing lines. The middle zone has the greatest variation and the southern zone the least variation over the past century. Also, the southern zone has greater variation during the past 30 years. The association between precipitation and SOI is investigated by dividing the precipitation records of each station into El Niño, La Niña, and neutral periods. The Wilcoxon rank‐sum test showed that differences in precipitation for the three classes were most marked in the southern zone of the study area. The frequencies of below‐ and above‐average precipitation for El Niño, La Niña, and neutral periods are estimated for the 30 precipitation time series as well. The results show that the frequencies of precipitation under each set of conditions, with lower precipitation generally associated with El Niño periods in the southern zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
《Continental Shelf Research》2006,26(17-18):2050-2072
A 5-yr data set of near-bed current and suspended-sediment concentration measured within 2 m of the seabed in 60-m water depth has been analyzed to evaluate the interannual variability of physical processes and sediment transport events on the Eel River continental shelf, northern California. This data set encompasses a wide range of shelf conditions with winter events characterized as: Major Flood (1996/97), strong El Niño (1997/98), strong La Niña (1998/99), and Major Storm (1999/00). Data were collected at a site located 25 km north of the Eel River mouth, on the landward edge of the mid-shelf mud deposit. During the winter months sediment resuspension is forced primarily by near-bed oscillatory flows, and sediment transport occurs both as suspended load and as gravity-driven (fluid-mud) flows. Winter conditions that caused periods of increased sediment transport existed on average for 142 d yr−1 over the total record, ranging between 89 d in the Major Flood year (1996/97) and 171 d in the La Niña year (1998/99). Hourly averaged values of significant wave height varied between 0.5 and 10.7 m and hourly averaged values of near-bed orbital velocities ranged between 0 and 125 cm s−1. During the five winters, sediment threshold conditions were exceeded an average of 35% of the time, ranging from 19% in the Major Flood year (1996/97) to 52% in the La Niña year (1998/99). Mean concentration of suspended sediment, measured at 30 cmab, ranged from values close to 0–8 g l−1. Among winters, major sediment flux events exhibited different patterns due to varying combinations of physical processes including river floods, waves, and shelf circulation. Within winters, the major period of sediment flux varied from a 3-d fluid mud event (Major Flood winter) to a 50-d period of persistent southerlies (El Niño winter) and a winter of continuous storm cycles (La Niña winter). Winter-averaged suspended-sediment concentration appeared to vary in response to river discharge, while total sediment flux responded to storm intensity. The net sediment flux appeared to depend on timing of river discharge and shelf conditions. On the Eel River shelf, the mid-shelf mud deposit apparently is not emplaced by deposition from the river plume, but by secondary processes from the inner shelf including off-shelf transport of sediment suspensions and gravity-driven fluid-mud flows. Thus, these inner-shelf processes redistribute sediment supplied by the Eel River (a point source) making the inner shelf a line source of sediment that forms and nourishes the mid-shelf deposit. Large-scale shelf circulation patterns and interannual variability of the physical forcing are also important in determining the locus of the mid-shelf deposit, and both are influenced by climate variations. Post-depositional alteration of the deposit also depends on the subsequent shelf conditions following major floods.  相似文献   

10.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Banda Sea surface-layer divergence   总被引:3,自引:0,他引:3  
Sea-surface temperature (SST) within the Banda Sea varies from a low of 26.5 °C in August to a high of 29.5 °C in December and May. Ekman upwelling reaches a maximum in May and June of approximately 2.5 Sv (Sv=106 m3 s?1) with Ekman downwelling at a maximum in February of approximately 1.0 Sv. The Ekman pumping annual average is 0.75 Sv upwelling. During the upwelling period, from April through December the average Ekman upwelling velocity is 2.36 × 10?6 m s?1 (1.27 Sv). ENSO modulation is generally within 0.5 Sv of the mean Ekman curve, with weaker (stronger) July to October upwelling during El Niño (La Niña). Combined TOPEX/POSEIDON and ERS 1993–1999 altimeter data reveal a 33 cm maximum range of sea level. Steric effects are minor, with well over 80% of the sea level change due to mass divergence (some bias due to unresolved tidal aliasing may still be present). The annual and interannual sea level behavior follows the monsoonal and ENSO phenomena, respectively. Lower (higher) sea level occurs in the southeast (northwest) monsoon and during El Niño (La Niña) events. The surface-layer volume anomaly and the surface-layer divergence, assuming a two-layer ocean, are estimated. Maximum divergence is attained during the transitional monsoon months of October/November: 1.7 Sv gain (convergence), with matching loss (divergence) in the April/May. During the El Niño growth period of 1997 the surface layer is divergent, but in 1998 when the El Niño was on the wane, the average rate of change is convergent. Surface-layer divergence attains values as high as 4 Sv. Banda Sea surface-water divergence correlates reasonably well with the 3-month lagged export of surface (upper 100?m) water into the Indian Ocean as estimated by a shallow pressure gauge array. It is concluded that the Banda Sea surface-layer divergence influences the timing and transport profile of the Indonesian throughflow export into the Indian Ocean, as proposed by Wyrtki in 1958, and that satellite altimetry may serve as an effective means of monitoring this phenomena.  相似文献   

12.
Severe hydrological droughts in the Amazon have generally been associated with strong El Niño events. More than 100 years of stage record at Manaus harbour confirms that minimum water levels generally coincide with intense warming in the tropical Pacific sea waters. During 2005, however, the Amazon experienced a severe drought which was not associated with an El Niño event. Unless what usually occurs during strong El Niño events, when negative rainfall anomalies usually affect central and eastern Amazon drainage basin; rainfall deficiencies in the drought of 2005 were spatially constrained to the west and southwest of the basin. In spite of this, discharge stations at the main‐stem recorded minimum water levels as low as those observed during the basin‐wide 1996–1997 El Niño‐related drought. The analysis of river discharges along the main‐stem and major tributaries during the drought of 2004–2005 revealed that the recession on major tributaries began almost simultaneously. This was not the case in the 1996–1997 drought, when above‐normal contribution of some tributaries for a short period during high water was crucial to partially counterbalance high discharge deficits of the other tributaries. Since time‐lagged contributions of major tributaries are fundamental to damp the extremes in the main‐stem, an almost coincident recession in almost all tributaries caused a rapid decrease in water discharges during the 2005 event. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A high-resolution (~1 km horizontal grid and 21 vertical layers) numerical model based on the Princeton Ocean Model (POM) has been used to study the 3D dynamics of the Upper Gulf of Thailand (UGOT). While influenced by tides and rivers like other estuarine systems, the UGOT is unique because it is wide (~100 km?×?100 km), it is shallow (average depth of only ~15 m), it is located in low latitudes (~12.5°N–13.5°N), and it is influenced by the seasonal monsoon. Sensitivity studies were thus conducted to evaluate the impact that surface heat fluxes, monsoonal winds, river runoffs, and the low latitude may have on the dynamics; the latter has been evaluated by modifying the Coriolis parameter and comparing simulations representing low and mid latitudes. The circulation in the UGOT changes seasonally from counter-clockwise during the northeast monsoon (dry season) to clockwise during the southwest monsoon (wet season). River discharges generate coastal jets, whereas river plumes tend to be more symmetric near the river mouth and remain closer to the coast in low latitudes, compared with mid-latitude simulations. River plumes are also dispersed along the coast in different directions during different stages of the monsoonal winds. The model results are compared favorably with a simple wind-driven analytical estuarine model. Comparisons between an El Niño year (1998) and a La Niña year (2000) suggest that water temperatures, warmer by as much as 2 °C in 1998 relative to 2000, are largely driven by decrease cloudiness during the El Niño year. The developed model of the UGOT could be used in the future to address various environmental problems affecting the region.  相似文献   

14.
This paper examines the impacts of climate variability upon the regional hydrological regimes of the Yellow River in China. Results indicate that the average annual precipitation is 494·8 mm in La Niña years and only 408·8 mm in El Niño years. The difference is 86·0 mm, or 18·8% over the long-term average. The stream-flows in the La Niña years are higher than that in El Niño years: 9·2% at the Lan-Zhou station, 9·5% for Tou-Dao-Guai station, 11·8% for Long-Men, 17·6% for San-Men-Xia, 19·2% at the Hua-Yuan-Hou station, and 22·0% at the Li-Jin station. Both precipitation and stream-flow responses show temporal and spatial patterns. The relationship among the stream-flow, precipitation, and temperature, which was obtained by ArcGIS Geostatistical Analyst based on observed data, indicates stream-flow is sensitive to both precipitation and temperature. For small precipitation increases (less than 13%), the stream-flow percentage change is less than the precipitation change for the Yellow River. The results of this paper can be used as a reference for watershed water resources planning and management to maintain the healthy life and proper function of the river. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Simulation outputs were used to contrast the distinct evolution patterns between two types of El Niño. The modeled isotherm depth anomalies closely matched satellite sea surface height anomalies. Results for the El Niño Modoki (central Pacific El Niño) corresponded well with previous studies which suggested that thermocline variations in the equatorial Pacific contain an east–west oscillation. The eastern Pacific El Niño experienced an additional north–south seesaw oscillation between approximately 15° N and 15° S. The wind stress curl pattern over the west-central Pacific was responsible for the unusual manifestation of the eastern Pacific El Niño. The reason why the 1982/1983 El Niño was followed by a normal state whereas a La Niña phase developed from the 1997/1998 El Niño is also discussed. In 1997/1998, the Intertropical Convergence Zone (ITCZ) retreated faster and easterly trade winds appeared immediately after the mature El Niño, cooling the sea surface temperature in the equatorial Pacific and generating the La Niña event. The slow retreat of the ITCZ in 1982/1983 terminated the warm event at a much slower rate and ultimately resulted in a normal phase.  相似文献   

17.
The rigin and fate of six phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), di‐n‐butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di (2‐ethylhexyl) phthalate (DEHP) and di‐n‐octyl phthalate (DnOP)), were investigated during 2005 and 2006 in the densely populated Seine river estuary. Four compounds, DMP, DEP, DnBP and DEHP were detected at all the stations with DEHP (160–314 ng L?1), followed by DEP (71–181 ng L?1) and next DnBP (67–319 ng L?1), except at la Bouille, where DnBP was the second most important compound. BBP and DnOP concentrations remained low and were not found at all the stations. Considering all six phthalates, Caudebec‐en‐Caux (beginning of the salinity gradient) was the least polluted station (464 ng L?1), whereas Honfleur (771 ng L?1) and La Bouille (716 ng L?1) displayed the highest contamination levels, probably related to important industrial plants. From Caudebec‐en‐Caux to Honfleur (maximum turbidity), variation of DEHP concentration was related to that of suspended matter. In addition, the salinity rise in that area might have facilitated DEHP sorption upon particles. A significant correlation between flow magnitude and DEHP concentration was found (P < 0·01, n = 12), supporting the influence of the hydrological cycle upon contamination. Runoff contribution (56·9 kg d?1) to river contamination was confirmed by the annual evolution of phthalate concentrations in the Seine river at Poses. Concentrations of DEHP in the tributaries were in the same range as those of the Seine River (100–350 ng L?1), except for two in densely populated and industrialized areas: Robec (800 ng L?1) and Cailly (970 ng L?1). The treatment plant discharge fluxes were in the same range as those of tributaries (30·4–250 g d?1). During high flow periods, the influence of tributaries and of treatment plants seemed to play a minor part in the contamination level of the Seine river estuary. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We analyzed the relationship between the earth’s rotational variation and sea-surface temperature anomaly. By means of using Fast Fourier Transform (FFT) bandpass filter on the change of length-of-day (ΔLOD) data, the interannual variation series having time periods greater than 1.5-year and less than 8-year was obtained. Time series analyses of the interannual variation, which corresponds to the El Niño period, reveal a close linkage between the earth’s rotation and El Niño. A detailed comparison suggests, that six of seven El Niño events are nearly synchronous with the interannual variation of the earth’s rotation, and all ΔLOD peak are in El Niño years except 1991–92, which means the interannual variation of the earth’s rotation in these years is relatively slow. The correlation between ΔLOD and sea-surface temperature is about 0.517 (1 month-lag), which far exceeds the 99% significance level.  相似文献   

19.
This paper investigates mechanisms controlling the mixed-layer salinity (MLS) in the tropical Pacific during 1990–2009. We use monthly 1°?×?1° gridded observations of salinity, horizontal current and fresh water flux, and a validated ocean general circulation model with no direct MLS relaxation in both its full resolution (0.25° and 5 days) and re-sampled as the observation time/space grid resolution. The present study shows that the mean spatial distribution of MLS results from a subtle balance between surface forcing (E???P, evaporation minus precipitation), horizontal advection (at low and high frequencies) and subsurface forcing (entrainment and mixing), all terms being of analogous importance. Large-scale seasonal MLS variability is found mainly in the Intertropical and South Pacific Convergence Zones due to changes in their meridional location (and related heavy P), in the North Equatorial Counter Currents, and partly in the subsurface forcing. Maximum interannual variability is found in the western Pacific warm pool and in both convergence zones, in relation to El Niño Southern Oscillation (ENSO) events. In the equatorial band, this later variability is due chiefly to the horizontal advection of low salinity waters from the western to the central-eastern basin during El Niño (and vice versa during La Niña), with contrasted evolution for the Eastern and Central Pacific ENSO types. Our findings reveal that all terms of the MLS equation, including high-frequency (<1 month) salinity advection, have to be considered to close the salinity budget, ruling out the use of MLS (or sea surface salinity) only to directly infer the mean, seasonal and/or interannual fresh water fluxes.  相似文献   

20.
Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) problem for the 2015/16 strong El Nio event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Nio event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Nio occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Nio predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Nio event. By investigating the model errors represented by the tendency errors for the SSTA component,we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Nio event and explain why the 2015/16 El Nio was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector(NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Nio events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Nio events could be greatly enhanced by using the NFSV-like tendency error to correct the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号