首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Guoqiang Wang  Zongxue Xu 《水文研究》2011,25(16):2506-2517
A grid‐based distributed hydrological model, PDTank model, is used to simulate hydrological processes in the upper Tone River catchment. The Tone River catchment often suffers from heavy rainfall events during the typhoon seasons. The reservoirs located in the catchment play an important role in flood regulation. Through the coupling of the PDTank model and a reservoir module that combines the storage function and operation function, the PDTank model is used for flood forecasting in this study. By comparing the hydrographs simulated using gauging and radar rainfall data, it is found that the spatial variability of rainfall is an important factor for flood simulation and the accuracy of the hydrographs simulated using radar rainfall data is slightly improved. The simulation of the typhoon flood event numbered No. 9 shows that the reservoirs in the catchment attenuate the peak flood discharge by 423·3 m3/s and validates the potential applicability of the distributed hydrological model on the assessment of function of reservoirs for flood control during typhoon seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A geomorphological instantaneous unit hydrograph (GIUH) is derived from the geomorphological characteristics of a catchment and it is related to the parameters of the Clark instantaneous unit hydrograph (IUH) model as well as the Nash IUH model for deriving its complete shape. The developed GIUH based Clark and Nash models are applied for simulation of the direct surface run‐off (DSRO) hydrographs for ten rainfall‐runoff events of the Ajay catchment up to the Sarath gauging site of eastern India. The geomorphological characteristics of the Ajay catchment are evaluated using the GIS package, Integrated Land and Water Information System (ILWIS). The performances of the GIUH based Clark and Nash models in simulating the DSRO hydrographs are compared with the Clark IUH model option of HEC‐1 package and the Nash IUH model, using some commonly used objective functions. The DSRO hydrographs are computed with reasonable accuracy by the GIUH based Clark and Nash models, which simulate the DSRO hydrographs of the catchment considering it to be ungauged. Inter comparison of the performances of the GIUH based Clark and Nash models shows that the DSRO hydrographs are estimated with comparable accuracy by both the models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Due to more frequent extreme rainfall incidents in recent years, many large cities are considering the construction of new drainage systems to cope with rainfall in the order of 100-year events. In such cases, T-year point rainfall events should be supplemented with areal reduction factors (ARF) to avoid overdesign. To facilitate an initial design, a procedure based on using Chicago Design Storms (CDS) in combination with intensity–duration–area (IDA) curves was developed to produce CDS-ARF input rainfall. By means of the time of concentration, a specific instantaneous unit hydrograph (IUH) was obtained for each subcatchment. Combination of CDS-ARF rains and the subcatchment IUHs using convolution integrals was used to produce inflow hydrographs to the drainage system. A sequential design procedure that successively includes subcatchments for the entire drainage system in the downstream direction is implemented and exemplified ensuring a consistent initial design.  相似文献   

4.
Abstract

Abstract Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use.  相似文献   

5.
In order to investigate the hydrologic response of a green roof system within the urban environment, a monitoring campaign is carried out at the green roof site of the University of Genova (Italy). Experimental data confirm that the green roof is able to significantly mitigate the generation of runoff with median values of retained volume and peak reduction, respectively, equal to 94 and 98%. A conceptual linear reservoir and a simple mechanistic (Hydrus‐1D) models are implemented to simulate the hydrologic behaviour of the system; each model is calibrated and validated based on experimental data collected at the green roof site. The hydrographs simulated with both hydrologic models reproduce with acceptable matching capabilities the experimental measurements, as confirmed by the Nash‐Sutcliffe Efficiency index generally greater than 0·60. Although the relative percentage differences evaluated for the selected hydrograph variables (the total effluent volume, the peak flow rate and the hydrograph centroid) demonstrate that the mechanistic model is more accurate, prediction errors of the conceptual model are generally limited when compared with the observed hydrologic performance. Results of the present comparison are useful in supporting conceptual model selection in case the hydrologic response is addressed for hydrologic performance assessment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A conceptual insytnataneous unit hydrograph (IUH) based on geomorphologival association of linear reservoirs (GR) previously developed by the authors has been compared with other IUH models: a distributed GR variation (GR(v)), the Nash IUH, the Chutha and Dooge IUH, and the Troutman and Karlinger IUH for the analysis of direct runoff hydrographs recorded in three experimental watershed of the north of Spain. The comparison was made through a calibration‐validation process in which a leave‐one‐out cross‐validation method was applied. The results indicate the satisfactory performance of all the models, with the advantage for the GR model of the dependence on only one parameter, which can be identified from the watershed and event characteristics. This property makes its use easier than that of other models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Experimental findings and observations indicate that plunging flow is related to the formation of bed load deposition in dam reservoirs. The sediment delta begins to form in the plunging region where the inflow river water meets the ambient reservoir water. Correct estimation of dam reservoir flow, plunging point, and plunging depth is crucial for dam reservoir sedimentation and water quality issues. In this study, artificial neural network (ANN), multi‐linear regression (MLR), and two‐dimensional hydrodynamic model approaches are used for modeling the plunging point and depth. A multi layer perceptron (MLP) is used as the ANN structure. A two‐dimensional model is adapted to simulate density plunging flow through a reservoir with a sloping bottom. In the model, nonlinear and unsteady continuity, momentum, energy, and k–ε turbulence equations are formulated in the Cartesian coordinates. Density flow parameters such as velocity, plunging points, and plunging depths are determined from the simulation and model results, and these are compared with previous experimental and model works. The results show that the ANN model forecasts are much closer to the experimental data than the MLR and mathematical model forecasts.  相似文献   

8.
Abstract

A continuous simulation rainfall-streamflow modelling approach that identifies unit hydrographs for total streamflow has been applied to an 11-year record from a national hydrometric monitoring network catchment in the UK. The model is of the parametrically parsimonious conceptual model (PPCM) type that can make efficient use of rainfall, streamflow and air temperature data readily available from established national and regional monitoring networks. A multiple split-sample model calibration and simulation analysis is presented that reveals some guiding principles for calibrating and applying PPCMs generally. The inadequacy of a one-dimensional objective function for calibrating best PPCMs is demonstrated. A two-dimensional objective function approach is superior but is shown to be unreliable in some cases, confirming the need for additional critical inspection of other model performance statistics, model parameters and time series plots as an integral part of the model calibration process. A strong tendency evident from the multiple split-sample analysis is that, for the catchment studied, models that fit relatively well in calibration mode perform relatively poorly in simulation mode.  相似文献   

9.
《水文科学杂志》2013,58(4):511-524
Abstract

The design and operation of flood management systems require computation of flood hydrographs for both design floods and flood forecasting purposes, since observed data are usually inadequate for these tasks. This is particularly relevant for most developing countries, i.e. mainly for tropical catchments. One possible way of obtaining information about flood hydrographs is through the use of rainfall—runoff models. Two such models, namely the Bochum model and the Nash Cascade—Diskin Infiltration model, which are semi-distributed and lumped models, respectively, were used in the present study. These models were applied to two catchments in Kenya with drainage areas of 6.71 km2 and 26.03 km2. A set of 13 selected rainfall—runoff events was used to calibrate and validate the models. The physical parameters required by the models were derived from catchment characteristics using GIS and remote sensing data while the conceptual parameters were obtained by optimization. The flood hydrographs simulated using the parameters so derived indicated that it is possible to use the two models in this tropical environment.  相似文献   

10.
Abstract: Linear continuous time stochastic Nash cascade conceptual models for runoff are developed. The runoff is modeled as a simple system of linear stochastic differential equations driven by white Gaussian and marked point process noises. In the case of d reservoirs, the outputs of these reservoirs form a d dimensional vector Markov process, of which only the dth coordinate process is observed, usually at a discrete sample of time points. The dth coordinate process is not Markovian. Thus runoff is a partially observed Markov process if it is modeled using the stochastic Nash cascade model. We consider how to estimate the parameters in such models. In principle, maximum likelihood estimation for the complete process parameters can be carried out directly or through some form of the EM (estimation and maximization) algorithm or variation thereof, applied to the observed process data. In this research we consider a direct approximate likelihood approach and a filtering approach to an algorithm of EM type, as developed in Thompson and Kaseke (1994). These two methods are applied to some real life runoff data from a catchment in Wales, England. We also consider a special case of the martingale estimating function approach on the runoff model in the presence of rainfall. Finally, some simulations of the runoff process are given based on the estimated parameters.  相似文献   

11.
ABSTRACT

Many basins in nature diverge or possess diverging elements. This study formulates a diverging flow model utilizing kinematic wave theory. The kinematic equations are solved using a first order explicit finite difference scheme. The model is tested using data on a number of laboratory basins reported in the literature. A comparison of this model with the plane model shows that they yield different concentration times and hydrographs that differ in shape, depending upon the degree of divergence.  相似文献   

12.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

13.
Abstract

A flow-interval hillslope discretization scheme is proposed for catchment hydrological modelling. By this scheme, a two-dimensional catchment is simplified into a one-dimensional cascade of flow intervals linked by the main stream. Each flow interval comprises a set of parallel hillslopes. The hillslope is the fundamental computational unit in the hydrological model providing lateral inflow to the main stream. The size of hillslope is determined by the catchment area and width functions. Catchment runoff is the total of hillslope responses through the river routing. Tests in four Japanese catchments showed that the model performed well on simulating the overall water balance, general flow pattern, and daily and hourly hydrographs of a whole catchment, as well as simultaneous simulation in different subcatchments. Characteristics of catchment hydrological responses and model applicability are discussed.  相似文献   

14.
ABSTRACT

An attempt is made to improve the existing analytical three-dimensional models to predict land subsidence due to the extraction of fluids from natural reservoirs. The elastic model proposed by McCann and Wilts (1951) and the poro-elastic one introduced by Geertsma (1957, 1966) are presented first. The general equations of recent poro-elastic theory are mentioned. Then follows a new, more generalized, three-dimensional approach from which the previous models can be derived as particular cases. The contribution to the land subsidence of the depressurized oil or water bearing strata is separated from that of the surrounding strata. It is possible in this way to take into account the different physical properties of the reservoir and of the remaining medium. It is finally shown that the elastic model can be considered as a limit poro-elastic one and therefore its application appears more strictly correlated with the real condition of the sub-soil. In particular, the model by McCann and Wilts (1951) proves to be advantageous only when the depressurized reservoir is much more liable to deformation than the surrounding medium.  相似文献   

15.
Under the assumption that hydrograph generation was affected by n linear reservoirs with the same value of storage coefficient k, Nash proposed the formulation of the Instantaneous Unit Hydrograph (IUH), which has been widely used in rainfall–runoff simulation and flood forecasting. However, the assumption of the parameter k having the same value in all reservoirs is obviously unphysical as it results in the estimated value of n not being integral. In this study, for parameter n integral, the different k value for each reservoir was derived using the Laplace transform and developing a general rule for the equation of the IUH of any order. The relationship between parameter k and the slope of the river channel estimated using digital elevation model (DEM) data is established, the parameter estimation procedures are given. As in most unit hydrograph studies, only isolated storm events are considered here. Seventeen flood events in three catchments were selected for the case studies. Application results show that the proposed method is slightly better than Nash's IUH with higher model efficiency and smaller absolute relative errors. This work provides a new methodology for the formulation of the IUH. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
17.
This study investigated the effect of urbanization on runoff from the On-Cheon Stream watershed in Pusan, Korea. This watershed has been experiencing considerable urbanization since the 1960s. There are two gauging stations in the watershed. For one of the stations there are recent flow data and for the other flow data were observed in the past. A linear reservoir model was chosen and runoff was analysed for several flood events. The linear reservoir model has been found to generate flood hydrographs accurately for both gauging stations, and its applicability to the study area has also been established. Using two methods of computing effective rainfall or rainfall excess (ϕ-index and constant percentage method), the results of runoff analyses were investigated. The ϕ-index method yielded better results than the constant percentage method. A comparison of hydrographs observed in the past with the simulation results at the Ie-Sup bridge site revealed that the peak discharge increased and the mean lag time of the study area decreased owing to urbanization over the past two decades. It is also possible to evaluate the effect of urbanization quantitatively. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Technological improvements in remote sensing and geographic information systems have demonstrated the abundance of artificially constructed water bodies across the landscape. Although research has shown the ubiquity of small ponds globally, and in the southeastern United States in particular, their cumulative impact in terms of evaporative alteration is less well quantified. The objectives of this study are to examine the hydrologic and evaporative importance of small artificial water bodies in the Upper Oconee watershed in the northern Georgia Piedmont, USA, by mapping their locations and modelling these small reservoirs using the Soil Water Assessment Tool. Comparative Soil Water Assessment Tool models were run with and without the inclusion of small reservoir surface area and volume. The models used meteorological inputs from 1990–2013 to represent years with drought, high precipitation, and moderate precipitation for both the calibration and evaluation periods. Statistical comparison of streamflow indicated that the calibration methodology produced results where the default model simulation without reservoirs fit observed flows more closely than the modified model with small reservoirs included (e.g., Nash–Sutcliffe efficiency of 0.72 vs. 0.64, r2 of 0.73 vs. 0.66, and percent bias of 11.4 vs. 21.6). In addition, Penman–Monteith, Hargreaves, and Priestley–Taylor evapotranspiration equations were used to estimate actual evaporation from 2,219 small water bodies identified throughout the 1,936.8 km2 watershed. Depending on the evaporation equation used, water bodies evaporated an average of 0.03–0.036 km3/year for the period 2003–2013. Using Penman–Monteith further, if the reservoirs were not considered and average actual evapotranspiration rates from the rest of the basin were applied, only 0.016 km3 of water would have left the basin as a result of evapotranspiration. This finding suggests construction of small reservoirs increased evaporation by an average of 0.017 km3 per year (approximately 46,500 m3/day). As the construction of small reservoirs continues and high resolution image data used to map these water bodies becomes increasingly available, watershed models that evolve to address the cumulative impacts of small water bodies on evaporation and other hydrologic processes will have greater potential to benefit the water resource management community.  相似文献   

19.
Abstract

One of the scale problems in hydrology is to relate nonlinearity in basin response to size and other factors. On the Sputka basin (103.4 km2), three groups of unit hydrographs were identified, each group having a common shape parameter, N, of the Nash model and each, therefore, representing one dimensionless response. The existence of the three dimensionless responses can be explained in the first place by there being different spatial rainfall patterns for the events from which they were derived. The time parameter, K, within the individual groups depends primarily on the initial flow and on the skewness of the rainfall time pattern. However, when the conditions of rainfall uniformity and of a minimum depth are strictly met, and the initial flow is in a certain range, the basin behaves in a linear fashion.  相似文献   

20.
《水文科学杂志》2013,58(4):868-882
Abstract

Non-Darcian flow in a finite fractured confined aquifer is studied. A stream bounds the aquifer at one side and an impervious stratum at the other. The aquifer consists of fractures capable of transmitting water rapidly, and porous blocks which mainly store water. Unsteady flow in the aquifer due to a sudden rise in the stream level is analysed by the double-porosity conceptual model. Governing equations for the flow in fractures and blocks are developed using the continuity equation. The fluid velocity in fractures is often too high for the linear Darcian flow so that the governing equation for fracture flow is modified by Forcheimer's equation, which incorporates a nonlinear term. Governing equations are coupled by an interaction term that controls the quasi-steady-state fracture—block interflow. Governing equations are solved numerically by the Crank-Nicolson implicit scheme. The numerical results are compared to the analytical results for the same problem which assumes Darcian flow in both fractures and blocks. Numerical and analytical solutions give the same results when the Reynolds number is less than 0.1. The effect of nonlinearity on the flow appears when the Reynolds number is greater than 0.1. The higher the rate of flow from the stream to the aquifer, the higher the degree of nonlinearity. The effect of aquifer parameters on the flow is also investigated. The proposed model and its numerical solution provide a useful application of nonlinear flow models to fractured aquifers. It is possible to extend the model to different types of aquifer, as well as boundary conditions at the stream side. Time-dependent flow rates in the analysis of recession hydrographs could also be evaluated by this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号