首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

2.
VARIATIONS IN KAMILA AMPHIBOLITES FROM SOUTHEASTERN PART OF THE KOHISTAN ISLAND-ARC TERRANE,PAKISTAN  相似文献   

3.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   

4.
Exsolution lamellae of garnet in clinopyroxene and orthopyroxene porphyroclasts from garnet pyroxenites in the Moldanubian zone were studied to elucidate the pressure–temperature conditions of the exsolution process and to reconstruct the burial and exhumation path of ultramafic rocks in the Variscan orogen. The porphyroclasts occur in a fine-grained matrix with metamorphic fabrics, which consists of clinopyroxene and small amounts of garnet, orthopyroxene and amphibole. The clinopyroxene porphyroclasts contain garnet + orthopyroxene lamellae as well as ilmenite rods that have orientation parallel to (100) planes of the porphyroclasts. Orthopyroxene porphyroclasts host garnet and clinopyroxene lamellae, which show the same lattice preferred orientation. In both cases, lamellar orthopyroxene, clinopyroxene and garnet were partially replaced by secondary amphibole. Composition of exsolution phases and that of host pyroxene were reintegrated according to measured modal proportions and demonstrate that the primary pyroxene was enriched in Al and contained 8–11 mol.% Tschermak components. Conventional thermobarometry and thermodynamic modelling on the reintegrated pyroxene indicate that primary clinopyroxene and orthopyroxene megacrysts crystallized at 1300–1400 °C and 2.2–2.5 GPa. Unmixing and exsolution of garnet and a second pyroxene phase occurred in response to cooling and pressure increase before the peak pressure of 4.5–5.0 GPa was reached at ∼1100 °C. This scenario is consistent with a burial of hot upper-mantle ultramafics into a cold subcratonic environment and subsequent exhumation through 900 °C and 2.2–3.3 GPa, when the pyroxenites would have partially recrystallized during tectonic incorporation into eclogites and felsic granulites.  相似文献   

5.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

6.
Garnet–clinopyroxene intermediate granulites occur as thin layers within garnet–kyanite–K–feldspar felsic granulites of the St. Leonhard granulite body in the Bohemian Massif. They consist of several domains. One domain consists of coarser‐grained coexisting ternary feldspar, clinopyroxene, garnet, quartz and accessory rutile and zircon. The garnet has 16–20% grossular, and the clinopyroxene has 9% jadeite and contains orthopyroxene exsolution lamellae. Reintegrated ternary feldspar and the Zr‐in‐rutile thermometer give temperatures higher than 950 °C. Mineral equilibria modelling suggests crystallization at 14 kbar. The occurrence and preservation of this mineral assemblage is consistent with crystallization from hot dry melt. Between these domains is a finer‐grained deformed matrix made up of diopsidic clinopyroxene, orthopyroxene, plagioclase and K‐feldspar, apparently produced by reworking of the coarser‐grained domains. Embedded in this matrix, and pre‐dating the reworking deformation, are garnet porphyroblasts that contain clinopyroxene, feldspar, quartz, rutile and zircon inclusions. In contrast with the garnet in the coarser‐grained domains, the garnet generally has >30% grossular, the included clinopyroxene has 7–27% jadeite and the Zr content of rutile indicates much lower temperatures. Some of these high‐grossular garnet show zoning in Fe/(Fe + Mg), decreasing from 0.7 in the core to 0.6 and then increasing to 0.7 at the rim. These garnet are enigmatic, but with reference to appropriate pseudosections are consistent with localized new mineral growth from 650 to 850 °C and 10 to 17 kbar, or with equilibration at 20 kbar and 770 °C, modified by two‐stage diffusional re‐equilibration of rims, at 10–15 and 8 kbar. The strong pervasive deformation has obscured relationships that might have aided the interpretation of the origin of these porphyroblasts. The evolution of these rocks is consistent with formation by igneous crystallization and subsequent metamorphism to high‐T and high‐P, rather than an origin by ultrahigh‐T metamorphism. Regarding the petrographic complexity, combination of the high grossular garnet with the ternary feldspar to infer ultrahigh‐T metamorphism at high pressure is not justified.  相似文献   

7.
Pan‐African high‐pressure granulites occur as boudins and layers in the Lurio Belt in north‐eastern Mozambique, eastern Africa. Mafic granulites contain the mineral assemblage garnet + clinopyroxene + plagioclase + quartz ± magnesiohastingsite. Garnet porphyroblasts are zoned with increasing almandine and spessartine contents and decreasing grossular and pyrope contents from core (Alm46Prp32Grs21Sps2) to rim (Alm52Prp26Grs19Sps3). This pattern is interpreted as a retrograde diffusion zoning with the preserved core chemistry representing the peak metamorphic composition. Mineral reaction textures occur in the form of monomineralic and composite plagioclase ± orthopyroxene ± amphibole ± biotite ± magnetite coronas around garnet porphyroblasts. Thermobarometry indicates peak metamorphic conditions of up to 1.57 ± 0.14 GPa and 949 ± 92 °C (stage I), corresponding to crustal depths of ~55 km. Zircon yielded an U–Pb age of 557 ± 16 Ma, inferred to date crystallization of zircon during peak or immediately post‐peak metamorphism. Formation of plagioclase + orthopyroxene‐bearing coronas surrounding garnet indicates a near‐isothermal decompression of the high‐pressure granulites to lower pressure granulite facies conditions (stage II). Development of plagioclase + amphibole‐coronas enclosing the same garnet porphyroblasts shows subsequent cooling into amphibolite facies conditions (stage III). Symplectitic textures of the corona assemblages indicate rapid decompression. The high‐pressure granulite facies metamorphism of the Lurio Belt, followed by near‐isothermal decompression and subsequent cooling, is in accordance with a long‐lived tectonic history accompanied by high magmatic activity in the Lurio Belt during the late Neoproterozoic–early Palaeozoic East‐African–Antarctic orogeny.  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987112000564   总被引:10,自引:0,他引:10  
High-pressure(HP) granulites widely occur as enclaves within tonalite-trondhjemitegranodiorite (TTG) gneisses of the Early Precambrian metamorphic basement in the Shandong Peninsula, southeast part of the North China Craton(NCC).Based on cathodoluminescence(CL),laser Raman spectroscopy and in-situ U-Pb dating,we characterize the zircons from the HP granulites and group them into three main types:inherited(magmatic) zircon,HP metamorphic zircon and retrograde zircon.The inherited zircons with clear or weakly defined magmatic zoning contain inclusions of apatites,and 207Pb/206Pb ages of 2915—2890 Ma and 2763—2510 Ma,correlating with two magmatic events in the Archaean basement. The homogeneous HP metamorphic zircons contain index minerals of high-pressure metamorphism including garnet,clinopyroxene.plagioclase,quartz,rutile and apatite,and yield 207Pb/206Pb ages between 1900 and 1850 Ma,marking the timing of peak HP granulite fades metamorphism.The retrograde zircons contain inclusions of orthopyroxene.plagioclase.quartz,apatite and amphibole.and yield the youngest 207Pb/206Pb ages of 1840—1820 Ma among the three groups,which we correlate to the medium to low-pressure granulite fades retrograde metamorphism.The data presented in this study suggest subduction of Meso- and Neoarchean magmatic protoliths to lower crust depths where they were subjected to HP granulite facies metamorphism during Palaeoproterozoic(1900—1850 Ma).Subsequently, the HP granulites were exhumated to upper crust levels,and were overprinted by medium to low-pressure granulite and amphibolite facies retrograde event at ca.1840—820 Ma.  相似文献   

9.
Iron-magnesium distribution coefficients for coexisting ortho- and clinopyroxene in 22 amphibolites from the New Jersey Precambrian Highlands range from 1.40 to 1.90. No systematic areal variation of the distribution coefficient is discernable within a 700 mi2 area. The distribution coefficient is, however, systematically related to pyroxene composition. The distribution coefficient tends to increase with increasing pyroxene weight % FeO (Fe as FeO) and decrease with increasing MgO and Al2O3. Data from other workers indicates that the distribution coefficient versus pyroxene composition trends found in the Highlands amphibolites are also present in both igneous and metamorphic rock suites from several other areas. Possible influence of pyroxene CaO on the distribution coefficient is also indicated. The Highlands amphibolite type trends are, however, directly opposite to those previously reported for Australian granulites. Both types of trends are apparently valid since both are present in at least one instance in metamorphic rocks from a relatively small area. The causes for the development of the two types of trends are imperfectly understood. Data presented indicates, however, that the New Jersey amphibolite type trends are apparently more characteristic of Fe-poor pyroxenes, whereas, the Australian granulite type trends are more characteristic of Fe-rich pyroxenes.The distribution coefficient in the Highlands amphibolites is also systematically related to bulk-rock composition due to the sympathetic variation of pyroxene Fe-Mg content with total rock MgO/FeO(Fe as FeO). The observed range of the distribution coefficient in the Highlands amphibolites may, consequently, mostly reflect variation in bulk-rock composition and not variation in crystallization temperature.  相似文献   

10.
We investigated the metamorphic cooling history of underplated magmatic rocks at midcrustal depth. Granulites and amphibolites occur within the Jurassic magmatic belt of the Coast Range south of Antofagasta in northern Chile between 23°25' and 24°20' S. The protoliths of the metamorphic rocks are basic intrusions of Early Mesozoic age. They are part of the magmatically formed crust, and the essentially dry magmas were emplaced in an extensional regime. The granulites (clinopyroxene–orthopyroxene–plagioclase) show all stages of fabric development from magmatic to granoblastic fabrics. Pyroxene compositions were reset at temperatures around 800°  C independent of the stage of textural equilibration. The granulites were partially amphibolitized at upper amphibolite facies temperatures of 600–700°  C. Following cooling, a possible reheating to greenschist facies temperatures around 500°  C is indicated by prograde zoning in magnetite–ilmenite pairs. Mineral assemblages are not suitable for barometry, but a conservative estimation of the garnet-in reaction at given whole-rock compositions suggests maximum pressures in the granulite facies of around 5 kbar, and similar pressures are indicated by phengite barometry for the greenschist facies. The P–T  path of granulite–amphibolite metamorphism is one of slow cooling from magmatic temperatures with heterogeneous deformation. The thinning of the pre-Andean (Precambrian–Triassic) crust was apparently compensated by the magmatic underplating and this special tectonomagmatic setting caused the prolonged residence of the accreted rocks at midcrustal levels.  相似文献   

11.
Petrographic, petrological and geochemical data for 16 mafic meta-igneous, granulite facies lower crustal xenoliths from the East Eifel were collected in order to develop a model for the lower crustal history for this region. The xenoliths consist of plagioclase±amphibole±clinopyroxene±garnet±orthopyroxene±scapolite + opaque minerals±apatite±rutile±zircon. Garnet has reacted to a variable extent with plagioclase and clinopyroxene to form a corona of plagioclaseII+ amphibole + orthopyroxeneII. Pyroxenes and plagioclases show complex zoning patterns with regard to Al and Ca which can be interpreted in terms of P, T history. Decreasing temperature and pressure conditions are recorded by decreasing Al in clinopyroxene rims coexisting with increasing anorthite contents in plagioclase rims and the breakdown of garnet. In addition, a young heating event that affected the granulites to different degrees is inferred from the complementary Ca-zoning patterns in clino- and orthopyroxenes. Rare earth element (REE) patterns of whole rocks together with the trends displayed and fractionated liquids. REE analyses of the mineral separates display equilibrium partitioning patterns for amphibole and clinopyroxene, although isotopic data show that amphibole contains externally-derived Sr and Nd components not recognized in other minerals. At least a 4-stage history for the granulites is recorded: (1) intrusion and crystal fractionation of basaltic magmas in the lower crust, probably accompanied by crustal assimilation, (2) granulite facies metamorphism, (3) a decrease in temperature and pressure, and (4) a later heating event. The complicated thermal history is reflected in Sm–Nd mineral isochron ages which range from about 170 Ma down to about 100 Ma and cannot be assigned to distinct geological events. These ages correlate with inferred temperatures; the low ages are measured for xenoliths with the highest temperatures. In some cases the young heating event is likely to be responsible for partial resetting of the mineral isochrons.  相似文献   

12.
The granitic mylonite zone in the Cretaceous Ryoke metamorphic belt contains deformed amphibolites as thin layers. The amphibolite layers do not exhibit pinch‐and‐swell or boudinage structures, even when contained in a high‐strain granitic mylonite. This mode of occurrence suggests that they were deformed as much as the surrounding granite mylonite. In the highly deformed zone, strongly foliated amphibolites contain Ti‐rich brown amphibole porphyroclasts rimmed by Ti‐poor green amphibole, titanite and chlorite. These porphyroclasts are elongated, forming shear surfaces defined by preferential distribution of the chlorite and titanite. Porphyroclastic plagioclase in the strongly foliated amphibolites consists of two components: an anorthite‐rich core and an anorthite‐poor rim. Based on these observations, the mass‐balanced reaction occurring during deformation is defined as As the reaction products form a weak interconnected matrix, the strain rate of the amphibolites may be controlled by the rate of dissolution–precipitation through fluids. Weakly foliated amphibolites in the low‐strain zone exhibit cataclastic microstructures, whereas the strongly foliated amphibolites do not exhibit such features. These microstructural and chemical changes suggest that high‐strain amphibolites were initially deformed by cataclasis, followed by deformation through metamorphic reactions. During the metamorphism/deformation, old plagioclase grains with high Xan were not stable and dissolved, and new plagioclase grains with low Xan crystallized at the old plagioclase rim. Dissolution of old plagioclase and precipitation of new plagioclase occurred normal to and parallel to the foliation, respectively, reflecting incongruent pressure solution due to differential stress and changes in P–T–H2O conditions. The development of incongruent pressure solution is attributed to increased fluid flux in the strongly foliated amphibolites, as evidenced by the greater abundance of hydration‐reaction products in the strongly foliated amphibolites than in the weakly foliated ones.  相似文献   

13.
The central part of the Carolina terrane in western South Carolina comprises a 30 to 40 km wide zone of high grade gneisses that are distinct from greenschist facies metavolcanic rocks of the Carolina slate belt (to the SE) and amphibolite facies metavolcanic and metaplutonic rocks of the Charlotte belt (to the NW). This region, termed the Silverstreet domain, is characterized by penetratively deformed felsic gneisses, granitic gneisses, and amphibolites. Mineral assemblages and textures suggest that these rocks formed under high‐pressure metamorphic conditions, ranging from eclogite facies through high‐P granulite to upper amphibolite facies. Mafic rocks occur as amphibolite dykes, as metre‐scale blocks of coarse‐grained garnet‐clinopyroxene amphibolite in felsic gneiss, and as residual boulders in deeply weathered felsic gneiss. Inferred omphacite has been replaced by a vermicular symplectite of sodic plagioclase in diopside, consistent with decompression at moderate to high temperatures and a change from eclogite to granulite facies conditions. All samples have been partially or wholly retrograded to amphibolite assemblages. We infer the following P‐T‐t history: (1) eclogite facies P‐T conditions at ≥ 1.4 GPa, 650–730 °C (2) high‐P granulite facies P‐T conditions at 1.2–1.5 GPa, 700–800 °C (3) retrograde amphibolite facies P‐T conditions at 0.9–1.2 GPa and 720–660 °C. This metamorphic evolution must predate intrusion of the 415 Ma Newberry granite and must postdate formation of the Charlotte belt and Slate belt arcs (620 to 550 Ma). Comparison with other medium temperature eclogites and high pressure granulites suggests that these assemblages are most likely to form during collisional orogenesis. Eclogite and high‐P granulite facies metamorphism in the Silverstreet domain may coincide with a ≈570–535 Ma event documented in the western Charlotte belt or to a late Ordovician‐early Silurian event. The occurrence of these high‐P assemblages within the Carolina terrane implies that, prior to this event, the western Carolina terrane (Charlotte belt) and the eastern Carolina terrane (Carolina Slate belt) formed separate terranes. The collisional event represented by these high‐pressure assemblages implies amalgamation of these formerly separate terranes into a single composite terrane prior to its accretion to Laurentia.  相似文献   

14.
Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38±2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36±4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism.Authors listed alphabeticallyPublished by permission of the Director, New York State Museum, Journal Series Number 299  相似文献   

15.
柴北缘都兰高压麻粒岩的变质演化及形成的动力学背景   总被引:7,自引:5,他引:2  
于胜尧  张建新  李金平 《岩石学报》2009,25(9):2224-2234
在柴北缘-阿尔金HP/UHP变质带东端,新识别出一个高压麻粒岩单元.高压基性麻粒岩是高压麻粒岩单元的主体,还包括少量高压中酸性麻粒岩.高压基性麻粒岩主要由平衡共生的石榴子石、单斜辉石、斜长石组成,还含有不等量的蓝晶石、角闪石、石英、金红石、黝帘石/斜黝帘石、钛铁矿、方柱石等矿物.高压长英质麻粒岩主要包括石榴子石、蓝晶石、钾长石、斜长石、石英等矿物,并具有少量的单斜辉石和角闪石.岩石学和矿物学数据显示高压麻粒岩经历了多阶段的变质演化,温压计算获得峰期高压麻粒岩相的变质条件为1.40~1.85GPa和800~925℃.退变质高角闪岩相的变质条件为P=0.80~1.05GPa和T=580~695℃:进一步的退变质作用发生在低角闪岩相/绿片岩相条件下(<0.8GPa和<550℃).岩石学、矿物学及年代学资料研究表明都兰地区的高压麻粒岩具有与相邻榴辉岩不同的变质演化历史,而不是榴辉岩在抬升过程中热松弛作用所致.高压麻粒岩可能形成于与陆壳俯冲相关的造山带增厚的陆壳根部环境,形成的深度为50~70km.  相似文献   

16.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

17.
ULIANOV  A.; KALT  A. 《Journal of Petrology》2006,47(5):901-927
Basanites of the Chyulu Hills (Kenya Rift) contain mafic Mg–Aland Ca–Al granulite xenoliths. Their protoliths are interpretedas troctolitic cumulates; however, the original mineral assemblageswere almost completely transformed by subsolidus reactions.Mg–Al granulites contain the minerals spinel, sapphirine,sillimanite, plagioclase, corundum, clinopyroxene, orthopyroxeneand garnet, whereas Ca–Al granulites are characterizedby hibonite, spinel, sapphirine, mullite, sillimanite, plagioclase,quartz, clinopyroxene, corundum, and garnet. In the Mg–Algranulites, the first generation of orthopyroxene and some spinelmay be of igneous origin. In the Ca–Al granulites, hibonite(and possibly some spinel) are the earliest, possibly igneous,minerals in the crystallization sequence. Most pyroxene, spineland corundum in Mg–Al and Ca–Al granulites formedby subsolidus reactions. The qualitative PT path derivedfrom metamorphic reactions corresponds to subsolidus cooling,probably accompanied, or followed by, compression. Final equilibrationwas achieved at T 600–740°C and P <8 kbar, inthe stability field of sillimanite. The early coexistence ofcorundum and pyroxenes (± spinel), as well as the associationof sillimanite and sapphirine with clinopyroxene and the presenceof hibonite, makes both types of granulite rare. The Ca–Alhibonite-bearing granulites are unique. Both types enlarge thespectrum of known Ca–Al–Mg-rich granulites worldwide. KEY WORDS: granulite xenoliths; corundum; sapphirine; hibonite; Kenya Rift  相似文献   

18.
The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite – absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite–charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite–charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti – poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene–plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating (Tmax value ∼650–700 °C at P  6–8 kbar) along the prograde arm of a seemingly clockwise PT path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan – African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.  相似文献   

19.
It is necessary to understand the mechanisms of disequilibrium reactions in metamorphic rocks in order to (1) model the rate of reaction in response to changing state variables during tectonic process, and (2) interpret the assemblages of natural disequilibrium samples in terms of tectonic history. A sample was selected from an area of known tectonic history to examine in detail and document the kinetics of reaction. The sample preserves evidence of the garnet granulite to gabbro transition.Orthopyroxene and anorthite coronas around garnet and orthopyroxene rims around clinopyroxene are textural observations suggesting the overall reaction: garnet+clinopyroxene+quartz+plagioclase(matrix) orthopyroxene+ anorthite (corona). The disequilibrium nature of reaction is evident from compositional zoning of garnet, some zoning of clinopyroxene, and difference between corona anorthite (An90) and matrix plagioclase (An35).Several texturally-distinguished microenvironments in a single thin section were investigated to determine how components were redistributed during reaction; T and P are assumed to have been the same throughout. The compositional data are best explained by a partial equilibrium model in which orthopyroxene, garnet rims, Fe-rich clinopyroxene, and a hypothetical intergranular fluid approach equilibrium and are not in equilibrium with reactant garnet cores and matrix plagioclase. Corona texture suggests that intergranular diffusion had some effect but the composition data indicate that it was not rate-limiting. The fact that garnet rim compositions are nearly in equilibrium with product phases (with respect to Mg-Fe partitioning) suggests that diffusion in garnet can be considered a rate-limiting reaction step. Combining the differential equation of zoning for this system with mass and volume balance equations of reaction enables one to predict the density change with time by numerical integration.I conclude that comparison of core compositions of zoned minerals in high-grade rocks is meaningful only if a compositional plateau is preserved that can be proven not to be altered by diffusion. Diffusion in pyroxene is apparently too fast at high grade to make relict pyroxenes useful tracers of metamorphic conditions. The rim composition of zoned phases depends on the relative rate of reaction and internal diffusion; the approach of the rim of a reactant phase to equilibrium with products is a measure of the degree to which intragranular diffusion is rate-limiting. In general, this work supports reaction models that assume that intergranular diffusion is rapid and that interface kinetics or intragranular diffusion are usually rate-limiting factors.Reactions controlled by diffusion in garnet are slow geologically. Tectonic hysteresis can be produced because garnet can form in granulite assemblages more rapidly than it is consumed with changing heat flow. The rate of gabbro-garnet granulite transition depends on whether plagioclase reacts by zoning or separate product grains nucleate.  相似文献   

20.
Ductile extensional movements along the steeply inclined Hoher-Bogen shear zone caused the juxtaposition of Teplá-Barrandian amphibolites, granulites, and metaperidotites against Moldanubian mica schists and paragneisses. Garnet pyriclasites are well preserved within low-strain domains of this shear zone. Their degree of metamorphism is significantly higher than that of the surrounding rocks. Microstructural and mineral chemical data suggest in situ formation of the garnet pyriclasite by dehydration of pyroxene amphibolite at T>750–840°C and P<10–13 kbar including recrystallization-accommodated grain-size reduction of plagioclase and clinopyroxene, nucleation of garnet, and breakdown of amphibole into garnet+clinopyroxene+rutile. Subsequent decompression and retrograde extensional shearing led to the formation of mylonitic epidote amphibolite. The presence of lower crustal and mantle-derived slices within the Hoher-Bogen shear zone supports the view that (a) in Upper Devonian times the Teplá-Barrandian unit was thrust over Moldanubian rocks as a complete crustal unit, and (b) that during the subsequent Lower Carboniferous orogenic collapse, the garnet pyriclasite and metaperidotite were scraped off from the basal parts of the Teplá-Barrandian unit being dragged into the Hoher-Bogen shear zone due to dramatic and large-scale elevator-style movements. Received: 23 March 1999 / Accepted: 25 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号