首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
 More than 5 800 chemical analyses on water samples collected during 1987–1995 from 528 monitoring wells located in the southernmost part of the Po Valley (Emilia-Romagna region, northern Italy), one of the most urbanized, industrialized and agriculturally developed areas of Italy, have been processed. The analysis of data showed that: (1) waters are discharging from both confined and unconfined aquifers; (2) the water in the unconfined aquifer(s) is Ca(Mg)-HCO3 in composition while confined ones are Na-Cl and/or Na-(HCO3); (3) both confined and unconfined aquifer samples have δ18O and δD isotopic values of meteoric signature; (4) waters from both the aquifers are at least 40 years old; (5) the pumping rate has caused subsidence, particularly where the aquifer(s) is (are) unconfined; (6) the unconfined aquifer(s) is exposed to the risk of NO3 pollution; (7) considering the present "pressure" (i.e. pumping rate) on this natural environment by human activity, care must be taken in the future to preserve this "strategic" resource. Received: 27 October 1997 · Accepted: 12 March 1998  相似文献   

2.
In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.  相似文献   

3.
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: ‘excellent’, ‘good’ and ‘poor’ and seven hydrochemical facies are assigned to three broad types: ‘fresh’, ‘mixed’ and ‘brackish’ waters. The ‘fresh’ water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich ‘brackish’ groundwater represents freshening of modified connate water. The ‘mixed’ type groundwater has possibly evolved due to hydraulic mixing of ‘fresh’ and ‘brackish’ waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.  相似文献   

4.
The city of Scarborough lies on the eastern margin of the Greater Toronto Area of southern Ontario, Canada, along the northern coastline of Lake Ontario. The City has a population of 500,000 and is presently one of the fastest growing communities in Canada. The City is expanding northwards onto rural land on the south slope of the large Pleistocene glacial Oak Ridges Moraine system. The moraine system is underlain by a thick (150 m) succession of tills, sands and gravels and is a regionally-significant recharge area for three principle aquifer systems that discharge to numerous watercourses that flow to Lake Ontario. Protection of deeper aquifers from surface-generated urban contaminants is a particular concern. A groundwater flow model using Visual MODFLOW was developed for the 350-km2 Rouge River–Highland Creek (RRHC) drainage basin using an extensive GIS-based collection of subsurface geological, geophysical and hydrogeological data, maps of land use and surficial geology. The RRHC model was calibrated against point water level data, known potentiometric surfaces of the principal aquifers and baseflow measurements from streamflow gauging stations and determined to be within acceptable limits. Water balance calculations indicate that 70% of the basin recharge (106,000 m3/day) enters the Upper Aquifer along the crest and immediate flanks of the Oak Ridges Moraine. To the south, Upper Aquifer water moving through fractured till aquitards accounts for more than 75% of recharge to deeper aquifers. Water quality data confirm previous observations that urban- and rural-sourced contaminants (chlorides and nitrates) present in Upper Aquifer waters are moving rapidly into deeper aquifers. Some 83% of total RRHC recharge water is ultimately discharged as baseflow to creeks draining to Lake Ontario; the remainder discharges to springs and along eroding lakeshore bluffs. Model results demonstrate that deeper aquifers are poorly protected from urban contaminants and that long-term protection of ground and surface water quality has to be a priority of municipal planners if the resource is not to be severely degraded. Electronic Publication  相似文献   

5.
The Najd, Oman, is located in one of the most arid environments in the world. The groundwater in this region is occurring in four different aquifers A to D of the Hadhramaut Group consisting mainly of different types of limestone and dolomite. The quality of the groundwater is dominated by the major ions sodium, calcium, magnesium, sulphate, and chloride, but the hydrochemical character is varying among the four aquifers. Mineralization within the separate aquifers increases along the groundwater flow direction from south to north-northeast up to high saline sodium-chloride water in aquifer D in the northeast area of the Najd. Environmental isotope analyses of hydrogen and oxygen were conducted to monitor the groundwater dynamics and to evaluate the recharge conditions of groundwater into the Najd aquifers. Results suggest an earlier recharge into these aquifers as well as ongoing recharge takes place in the region down to present day. Mixing of modern and submodern waters was detected by water isotopes in aquifer D in the mountain chain (Jabal) area and along the northern side of the mountain range. In addition, δ2H and δ18O variations suggest that aquifers A, B, and C are assumed to be connected by faults and fractures, and interaction between the aquifers may occur. Low tritium concentrations support the mixing assumption in the recharge area. The knowledge about the groundwater development is an important factor for the sustainable use of water resources in the Dhofar region.  相似文献   

6.
Interest in artificially recharging selected shallow sands in South Louisiana with fresh water has been stimulated by the desire to retard contamination of municipal groundwater supplies by brackish water, to retard ground subsidence and decrease pumping lifts, and to develop emergency subsurface supplies of potable water for communities dependent on surface waters susceptible to contamination. Results of field experiments, laboratory work, and model calculations demonstrate that ion exchange reactions involving clays dispersed in aquifer sands can be expected to modify significantly the composition of waters injected into Gulf Coast sediments. As little as 0.1 weight percent smectite (montmorillonite) can remove, by exchange with absorbed Na, a significant fraction of the dissolved Ca and Mg present in the injected water. The hardness of the water is thus reduced, which may be a desirable modification in water quality. Exchange occurs as fast as the fluids can be pumped into or out of the aquifer, and the water-softening capacity of the aquifer can be restored by allowing sodium-rich native pore waters to sweep back over the dispersed clays. Each acre of an aquifer 50 feet thick and containing 0.1 wt % smectite could soften half a million gallons of injected Mississippi River water. Many individual Gulf Coast aquifers underlie tens of thousands of acres, and their potential softening capacity is thus enormous. Additional exchange processes involving adjacent aquitard shales presumably will operate over long-term periods. It is possible that Gulf Coast aquifers will be used at some point in the future as processing plants to treat injected water to improve its quality for a variety of municipal and industrial purposes.  相似文献   

7.
 The Russian Federation has many aquifers and these possess a wide range of chemical compositions. In Russia about 300 mineral water sources have been developed as spas and health resorts. More than 150 of them produce bottled mineral water. A brief historical revue is given. The study of mineral waters in Russia began as far back as the reign of Peter the Great (1682–1725). It has been prolonged by works of many Russian scientists. The details of the chemical composition of the different types of Russian mineral waters and some geological aquifer peculiarities are described. The most widely used classification of mineral waters in Russia is presented. The present condition of these waters and the government standards laid down for their use are described. Examples of different mineral waters are given. Received: 14 April 1998 / Accepted: 8 December 1998  相似文献   

8.
为进一步查明孟加拉国巴拉普库利亚煤矿水文地质特征及含水层间水力联系,为矿井水害防治提供理论依据,以19组水质化验数据为基础,结合含水层及隔水层空间展布特征、井田构造特征、水位历时曲线、水化学类型、氢氧同位素特征等,综合分析新近系UDT含水层、Ⅵ煤顶板含水层、Ⅵ煤含水层之间的水力联系。结果表明,井田北部LDT隔水层局部缺失,为UDT含水层水向含煤地层补给提供了条件;井田北翼煤层顶板含水层与UDT含水层水位变化规律密切相关,且水位相近,初步证明两者存在水力联系;各含水层水均为HCO3-Ca·Na·Mg型,均为低矿化度水,进一步证明各含水层间存在水力循环;聚类分析结果表明各含水层水质存在一定关联度,推演含水层间水力联系程度;氢(δD)氧(δ18O)同位素特征点分布于全球大气降水线附近,表明大气降水是各含水层共同的补给水源。研究成果可以指导孟加拉国巴拉普库利亚煤矿Ⅵ煤层开采时水害防治方向。   相似文献   

9.
The systematic sampling of the chemical composition of the groundwater from five karst springs (including an overflow spring) and one outflowing borehole have permitted to determine distinctive chemical changes in the waters that reflect the geochemical processes occurring in a carbonate aquifer system from southern Spain. The analysis of the dissolution parameters revealed that geochemical evolution of the karst waters basically depends on the availability of the minerals forming aquifer rocks and the residence time within the aquifers. In the three proposed scenarios in the aquifers, which include the preferential flow routines, the more important geochemical processes taking place during the groundwater flow from the recharge to the discharge zones are: CO2 dissolution and exsolution (outgassing), calcite net dissolution, calcite and dolomite sequential dissolution, gypsum/anhydrite and halite dissolution, de-dolomitization and calcite precipitation. A detailed analysis of the hydrochemical data set, saturation indices of the minerals and partial pressure of CO2 in the waters joined to the application of geochemical modelling methods allowed the elaboration of a hydrogeochemical model of the studied aquifers. The developed approach contributes to a better understanding of the karstification processes and the hydrogeological functioning of carbonate aquifers, the latter being a crucial aspect for the suitable management of the water resources.  相似文献   

10.
 Mathematical modelling of salt-water intrusion processes in three aquifers on the southern coast of Spain (Río Verde, Río Vélez and Castell de Ferro) reveals that, although all three systems are subject to the same climate and seasonal over-exploitation, geological and human factors have very different effects on the dynamics of contamination. In the Río Verde aquifer, the most important influence is the high volume of extractions occurring during the dry season; in Río Vélez, the intrusion is strongly controlled by infiltration of water from the river to the aquifer, and, in the Castell de Ferro system, an intensely karstified carbonate massif lying in contact with both the sea water and the detrital aquifer represents the main entrance point for influx of sea water and subsequent washing of the aquifer. We have undertaken a mathematical simulation of various possible measures to counteract intrusion, according to the specific characteristics of the process in each aquifer. These measures include artificial recharge, use of natural recharge from the river as a hydraulic barrier, and the construction of a low-permeability barrier. Received: 5 December 1995 · Accepted: 12 April 1996  相似文献   

11.
 Proposed groundwater withdrawals in the San Luis Valley of Colorado may lower the water table in Great Sand Dunes National Monument. In response, the National Park Service initiated a study that has produced a generalized conceptual model of the hydrologic system in order to assess whether a lowering of the water table might decrease the surface flow of lower Medano Creek. Based upon information obtained during the drilling of several boreholes, there appear to be five important hydrostratigraphic units underlying lower Medano Creek within the upper 30 m of the ground surface: 1. a perched aquifer overlying an aquitard located between about 5 and 6 m below the ground surface; 2. the aquitard itself; 3. an unconfined aquifer located between the upper and lower aquitards; 4. an aquitard located between about 27 and 29 m below the ground surface; and 5. a confined underlying the lower aquitard. Because the areal extent of the aquitards cannot be determined from the borehole data, a detailed conceptual model of the hydrogeologic system underlying lower Medano Creek cannot be developed. However, a generalized conceptual model can be envisioned that consists of a complex system of interlayered aquifers and leaky aquitards, with each aquifer having a unique hydraulic head. Water levels in the perched aquifer rise rapidly to their annual maximum levels in response to the arrival of the flow terminus of Medano Creek during the spring runoff event, and the location of the flow terminus is directly dependent upon the discharge of the creek. Water levels in the deeper, non-perched aquifers do not appear to fluctuate significantly in response to the arrival of the flow terminus, demonstrating that it is unlikely that the proposed groundwater withdrawals will decrease the surface flow of lower Medano Creek. Received: 27 December 1995 · Accepted: 20 February 1996  相似文献   

12.
敬信盆地第四系下更新统沉积环境以冲积扇相为主,发育有下部孔隙承压含水层(Mx);中上更新统以湖泊相为主,发育有上部孔隙承压含水层(Ms);孔隙潜水含水层的的发育层位为全新统。盆地内各层位地下水的补给来源主要为大气降水,上、下孔隙承压水主要靠孔隙潜水越流补给,其动态变化滞后于孔隙潜水近一个月,地下水向图们江径流、排泄。潜水含水层富水性较弱,水化学类型复杂;承压含水层富水性强,上部承压含水层水质优良,下部承压含水层水质稍差,水中Fe、Mn含量较高,并沿图们江向下游有增高的趋势。  相似文献   

13.
 Chemical data are used to clarify the hydrogeological regime in the Mafraq area in northern Jordan, as well as to determine the status of water quality in the area. Groundwater from the shallow aquifer in the Mafraq area can be divided into two major groups according to geographical locations and chemical compositions. Water in the basaltic eastern part of the study area is characterized by the dominance of chloride, sulfate, sodium, and potassium, whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Stable isotopes show that the shallow aquifers contain a single water type which originated in a distinct climatic regime. This water type deviates from the Global Meteoric Water Line (MWL), as well as from the eastern Mediterranean meteoric water line. The waters are poor in tritium, and thus can be considered generally older than 50 years. Chemical mass balance models suggest that water is moving from the west towards the north of the study area. This suggests that waters from the different basins are separated from each other. Degradation of water quality can be attributed to agricultural fertilizers in most cases, although the waste-water treatment plant at Khirbet es Samra is a contributor to pollution in the southwestern part of the study area. Received: 20 August 1997 · Accepted: 3 February 1998  相似文献   

14.
Groundwater is often the only water source in semi-arid regions of Turkey. Günyüzü Basin, located in the Sakarya River basin, SW of Eskişehir, exhibits semi-arid conditions. The study area is composed of Paleozoic metamorphic rocks, Eocene granitic rocks, Neogene sedimentary rocks, and Quaternary alluvium. In the basin, Paleozoic Marbles are the main reservoir rocks for hot and cold water, bordered by impermeable diabases dykes at the sides and by impermeable granites and schists. Neogene-aged limestones, conglomerates and alluvium represent the other significant aquifers. Water samples chosen to exemplify the aquifer characteristics, were collected from springs and wells in both the dry and the wet seasons. The cation and anion permutation of the samples show that carbonates are the dominant lithology in the formation of chemical composition. δ18O (−11.2 to −8.9‰) and δ2H (−79 to −60‰) isotopic values show that all waters (thermal and cold) are meteoric in origin. The hydrological, hydrochemical, and isotopic properties of the waters reveal that there exist two main groups of groundwater systems; one of these is deep circulating, while the other one is shallow. Tritium values, 0–4 TU (Tritium Unit) indicate the presence of old, static water in these aquifer systems.  相似文献   

15.
Crystalline aquifers of semi-arid southern India represent a vital water resource for farming communities. A field study is described that characterizes the hydrodynamic functioning of intensively exploited crystalline aquifers at local scale based on detailed well monitoring during one hydrological year. The main results show large water-table fluctuations caused by monsoon recharge and pumping, high spatial variability in well discharges, and a decrease of well yields as the water table decreases. Groundwater chemistry is also spatially variable with the existence of aquifer compartments within which mixing occurs. The observed variability and compartmentalization is explained by geological heterogeneities which play a major role in controlling groundwater flow and connectivity in the aquifer. The position of the water table within the fracture network will determine the degree of connectivity between aquifer compartments and well discharge. The presented aquifer conceptual model suggests several consequences: (1) over-exploitation leads to a drop in well discharge, (2) intensive pumping may contribute to the hydraulic containment of contaminants, (3) groundwater quality is highly variable even at local scale, (4) geological discontinuities may be used to assist in the location of drinking-supply wells, (5) modeling should integrate threshold effects due to water-table fluctuations.  相似文献   

16.
The spatial and temporal changes of the composition of the groundwater from the springs along the Wadi Qilt stream running from the Jerusalem–Ramallah Mountains towards the Jericho Plain is studied during the hydrological year 2006/2007. The residence time and the intensity of recharge play an important role in controlling the chemical composition of spring water which mainly depends on distance from the main recharge area. A very important factor is the oxidation of organics derived from sewage and garbage resulting in variable dissolved CO2 and associated HCO3 concentration. High CO2 yields lower pH values and thus under-saturation with respect to calcite and dolomite. Low CO2 concentrations result in over-saturation. Only at the beginning and at the end of the rainy season calcite saturation is achieved. The degradation of dissolved organic matter is a major source for increasing water hardness. Besides dissolution of carbonates dissolved species such as nitrate, chloride, and sulfate are leached from soil and aquifer rocks together with only small amounts of Mg. Mg not only originates from carbonates but also from Mg–Cl waters are leached from aquifer rocks. Leaching of Mg–Cl brines is particularly high at the beginning of the winter season and lowest at its end. Two zones of recharge are distinguishable. Zone 1 represented by Ein Fara and Ein Qilt is fed directly through the infiltration of meteoric water and surface runoff from the mountains along the eastern mountain slopes with little groundwater residence time and high flow rate. The second zone is near the western border of Jericho at the foothills, which is mainly fed by the under-groundwater flow from the eastern slopes with low surface infiltration rate. This zone shows higher groundwater residence time and slower flow rate than zone 1. Groundwater residence time and the flow rate within the aquifer systems are controlled by the geological structure of the aquifer, the amount of active recharge to the aquifer, and the recharge mechanism. The results of this study may be useful in increasing the efficiency of freshwater exploitation in the region. Some precautions, however, should be taken in future plans of artificial recharge of the aquifers or surface-water harvesting in the Wadi. Because of evaporation and associated groundwater deterioration, the runoff water should be artificially infiltrated in zones of Wadis with high storage capacity of aquifers. Natural infiltration along the Wadis lead to evaporation losses and less quality of groundwater.  相似文献   

17.
Groundwater quality in parts of Central Ganga Basin, India   总被引:1,自引:0,他引:1  
 This paper deals with the drinking water quality of the Ganga-Kali sub-basin which occupies 1300 km2 over parts of Aligarh and Etah districts. Water samples were collected from shallow and deep aquifers and were analyzed for major ions and trace elements. The analytical data were interpreted according to published guidelines. Chemical analysis shows that the groundwater in the basin is alkali bicarbonate type. Trace element studies of water from the shallow aquifer show that the concentration of toxic metals Fe, Mn, Cd, Pb, and Cr+6 are above permissible limits which may present a health hazard. The water from the deep aquifer is comparatively free from contamination. The aquifers are subject to contamination due to sewage effluents and excessive use of fertilizers and pesticides in agriculture. Received: 7 December 1998 · Accepted: 2 March 1999  相似文献   

18.
 The total amount of groundwater resources in the middle and upper Odra River basin is 5200×103 m3/d, or about 7.7% of the disposable groundwater resources of Poland. The average modulus of groundwater resources is about 1.4 L/s/km2. Of the 180 'Major Groundwater Basins' (MGWB) in Poland, 43 are partly or totally located within the study area. The MGWB in southwestern Poland have an average modulus of groundwater resources about 2.28 L/s/km2 and thus have abundant water resources in comparison to MGWB from other parts of the country. Several types of mineral waters occur in the middle and upper Odra River basin. These waters are concentrated especially in the Sudety Mountains. Carbon-dioxide waters, with yields of 414 m3/h, are the most widespread of Sudetic mineral waters. The fresh waters of the crystalline basement have a low mineralization, commonly less than 100 mg/L; they are a HCO3–Ca–Mg or SO4–Ca–Mg type of water. Various hydrochemical compositions characterize the groundwater in sedimentary rocks. The shallow aquifers are under risk of atmospheric pollution and anthropogenic effects. To prevent the degradation of groundwater resources in the middle and upper Odra River basin, Critical Protection Areas have been designated within the MGWB. Received, January 1995 Revised, May 1996, August 1997 Accepted, August 1997  相似文献   

19.
 The supraregional GIS-supported stochastical model, WEKU, for the determination of groundwater residence times in the upper aquifers of large groundwater provinces is presented. Using a two-dimensional analytical model of groundwater flow, groundwater residence times are determined within two extreme cases. In the first case, maximal groundwater residence times are calculated, representing the part of groundwater, that is drained by the main surface water of a groundwater catchment area. In the second case, minimal groundwater residence times for drainage into the nearest surface water are determined. Using explicit distribution functions of the input parameters, mean values as well as potential ranges of variations of the groundwater residence times are derived. The WEKU model has been used for the determination of groundwater residence times throughout Germany. The model results – mean values and deviations of the groundwater velocity and the maximal and minimal groundwater residence times in the upper aquifers – are presented by general maps and discussed in detail. It is shown that the groundwater residence times in the upper aquifer vary regionally, differentiated between less than 1 year and more than 2000 years. Using this information, the time scales can be specified, until measures to remediate polluted groundwater resources may lead to a substantial groundwater quality improvement in the different groundwater provinces of Germany. With respect to its supraregional scale of application, the WEKU model may serve as a useful tool for the supraregional groundwater management on a state, federal or international level. Received: 15 August 1995 · Accepted: 15 October 1995  相似文献   

20.
Thermal and mineral waters in north-eastern Slovenia   总被引:2,自引:0,他引:2  
 The Mura basin in north-eastern Slovenia is made up of two depressions, developed during the Late Neogene and Early Pliocene all within a widespread system of Pannonian basins. Both depressions are characterized by the occurrence of thermal waters of somewhat different hydrogeochemical character. Radgona depression is in the northern part of the basin and reaches depths of about 2 km. Thermal waters are generally dominated by sodium-bicarbonate, not related to the age of an aquifer, its wallrock composition, the type of porosity or total concentration of dissolved solids. Locally, sulphate-rich waters are encountered, and they are related to the presence of gypsum in the rocks of pre-Tertiary basement. The adjacent Ljutomer depression is over 4 km deep and comprises compartments with stagnant or semi-stagnant aquifers. Herein saline waters predominate, even in the aquifers of carbonate composition and abundant CO2 gas. In shallower, unconsolidated, intergranular aquifers sodium-bicarbonate waters predominate. Thermal aquifers of this type are very important to the economy of the region, but they are also subjected to overexploitation which is reflected in time-dependent changes of dynamic pressures, temperature, conductance, salinity, pH and concentration of major ions, trace elements, dissolved gasses, and total organic carbon. Mineral waters occur in shallow aquifers or springs in marginal areas of the Radgona depression. Bicarbonate waters are dominated by calcium, or both calcium and sodium. Some mineral waters are formed mainly by penetration of CO2 gas into shallow aquifers and consequent water–rock interaction. Composition of some mineral waters indicate their possible evolution from thermal waters which have risen from central parts of the Radgona depression along deep-seated faults, and have been modified by cooling and mixing processes. Received: 30 November 1998 · Accepted: 22 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号