首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
When a fast container ship or a naval vessel turns, accompanying roll motions occur. This roll effect must be considered in the horizontal equations of the motion of the ship to predict the maneuverability of the ship properly. In this paper, a new method for determining a model structure of the hydrodynamic roll moment acting on a ship and for estimating the hydrodynamic coefficients is proposed. The method utilizes a system identification technique with the data from sea trial tests or from free running model (FRM) tests. To obtain motion data that is applied to the proposed algorithm, an FRM of a large container ship was developed. Using this model ship, standard maneuvering tests were carried out on a small body of water out of doors. A hydrodynamic roll moment model was constructed utilizing the data from turning circle tests and a 20-20 zig-zag test. This was then confirmed through a 10-10 zig-zag test. It was concluded that a model structure of the hydrodynamic roll moment model could be established without difficulty through a system identification method and FRM tests.  相似文献   

3.
Many researchers have studied a wide range of nonlinear equations of motion describing a ship rolling in waves. In this study, a form of nonlinear equation governing the motion of a rolling ship subjected to synchronous beam waves is suggested and solved by the generalized Duffing's method in the frequency domain. Various representations of damping and restoring terms found in the literature are investigated and their solutions are analyzed by the above-mentioned method. Comparative results of nonlinear roll responses are obtained for four distinct vessel types at resonance conditions which constitute the worst situation. The results indicate the importance of roll damping and restoring, when constructing a nonlinear roll model. An inappropriate selection of damping and restoring terms may lead to serious discrepancies with reality, especially in peak roll amplitudes.  相似文献   

4.
On the parametric rolling of ships using a numerical simulation method   总被引:2,自引:0,他引:2  
B.C. Chang   《Ocean Engineering》2008,35(5-6):447-457
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better.  相似文献   

5.
Mathematical modeling of the nonlinear roll motion of ships is one subject widely dealt with in nonlinear ship dynamics. This paper investigates setting up a form of nonlinear roll motion model and developing its periodic solution by the generalized Krylov–Bogoliubov asymptotic method in the time domain. In this model, nonlinearities are introduced through damping and restoring terms. The restoring term is approximated as a third-order odd polynomial whereas the quadratic term is favored to represent the nonlinear damping. The ship is assumed to be under the influence of a sinusoidal exciting force. Although the method is expressible to contain any order of the perturbing term, a single degree is chosen to avoid cumbersome mathematical complexity. In order to improve the solution a first-order correction term is also included. Moreover, a numerical example is carried out for a small vessel in order to validate the solution scheme.  相似文献   

6.
The prediction of ship stability during the early stages of design is very important from the point of vessel’s safety. Out of the six motions of a ship, the critical motion leading to capsize of a vessel is the rolling motion. In the present study, particular attention is paid to the performance of a ship in beam sea. The linear ship response in waves is evaluated using strip theory. Critical condition in the rolling motion of a ship is when it is subjected to synchronous beam waves. In this paper, a nonlinear approach has been tried to predict the roll response of a vessel. Various representations of damping and restoring terms found in the literature are investigated. A parametric investigation is undertaken to identify the effect of a number of key parameters like wave amplitude, wave frequency, metacentric height, etc.  相似文献   

7.
In this paper our previously developed advanced system identification technique [1] has been applied to extract the frequency dependent roll damping from a series of model tests run in irregular (random) waves. It is shown that this methodology accurately models the roll damping which can then be used to produce accurate predictions of the ships roll motion. These roll motion predictions are not only more accurate than the potential flow predictions but more accurate than potential flow models corrected using either empirical prediction methods [2] and even those corrected using roll damping obtained from free decay sallying experiments. This methodology has the potential to significantly improve roll motion prediction during full scale at sea trails of vessels in order to dramatically improve safety of critical operations such as helicopter landing or ship to ship cargo transfer.  相似文献   

8.
This work presents an application of stochastic inverse method for the determination of nonlinear roll damping moment of a ship at zero forward speed. Nonlinear roll damping moment was estimated from the measured dynamic responses through stochastic inverse model. It is shown that this method enables nonlinear characteristic of the roll damping to be estimated without any assumption on its form of nonlinearity, including its confidence intervals given noisy data. The accuracy and practicability were assessed with laboratory tests related to both free-decay and forced rolling motions. The estimation results of the nonlinear damping moment show good agreement in all cases.  相似文献   

9.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas.  相似文献   

10.
In order to predict the roll motion of a floating structure in irregular waves accurately, it is crucial to estimate the unknown damping coefficients and restoring moment coefficients in the nonlinear roll motion equation. In this paper, a parameter identification method based on a combination of random decrement technique and support vector regression (SVR) is proposed to identify the coefficients in the roll motion equation of a floating structure by using the measured roll response in irregular waves. Case studies based on the simulation data and model test data respectively are designed to validate the applicability and validity of the identification method. Firstly, the roll motion of a vessel is simulated by using the known coefficients from literature, and the simulated data are used to identify the coefficients in the roll motion equation. The identified coefficients are compared with the known values to validate the applicability of the identification method. Then the roll motion is predicted by using the identified coefficients. The prediction results are compared with the simulated data, and good agreement is achieved. Secondly, the model test data of a FPSO are used to identify the coefficients in the roll motion equation. Then the random decrement signature of the roll motion is predicted by using the identified coefficients and compared with that obtained from the model test data, and satisfactory agreement is achieved. From this study, it is shown that the identification method can be effectively applied to identify the coefficients in the nonlinear roll motion equation in irregular waves.  相似文献   

11.
For a large floating structure in waves, the damping is computed by the linear diffraction/radiation theory. For most degrees of freedom, this radiation damping is adequate for an accurate prediction of the rigid body motions of the structure at the wave frequencies. This is not particularly true for the roll motion of a long floating structure. For ships, barges and similar long offshore structures, the roll damping is highly nonlinear. In these cases the radiation damping is generally quite small compared to the total damping in the system. Moreover, the dynamic amplification in roll may be large for such structures since the roll natural period generally falls within the frequency range of a typical wave energy spectrum experienced by them. Therefore, it is of utmost importance that a good estimate of the roll damping is made for such structures. The actual prediction of roll damping is a difficult analytical task. The nonlinear components of roll damping are determined from model and full scale experiments. This paper examines the roll damping components and their empirical contributions. These empirical expressions should help the designer of such floating structures. The numerical values of roll damping components of typical ships and barges in waves and current (or forward speed) are presented.  相似文献   

12.
An extended version of Melnikov's method is implemented in order to predict more accurately the threshold of global surf-riding for a ship operating in steep following seas. The key advantage of the proposed method is that it overcomes the limitation of small damping and/or small forcing that are intrinsic to the implementation of the standard Melnikov's method. A reference ITTC ship is used here by way of example and the result is compared to that obtained from standard analysis as well as numerical simulations. Because of the primary drawback of the extended Melnikov's method is the inability to arrive at a closed form equation, in this work the authors arrive at a “best fit” approximation to the extended Melnikov numerically predicted result.  相似文献   

13.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

14.
Y. Kim  B.W. Nam  D.W. Kim  Y.S. Kim 《Ocean Engineering》2007,34(16):2176-2187
This study considers the coupling effects of ship motion and sloshing. The linear ship motion is solved using an impulse-response-function (IRF) method, while the nonlinear sloshing flow is simulated using a finite-difference method. The IRF method requires the frequency-domain solution prior to conversion to time domain, but the computational effort is much less than that of direct time-domain approaches. The developed scheme is verified by comparing the motion RAOs between the frequency-domain solution and the solution obtained by the IRF method. Furthermore, a soft-spring concept and linear roll damping are implemented to predict more realistic motions of surge, sway, yaw, and roll. For the simulation of sloshing flow in liquid tanks, a physics-based numerical approach adopted by Kim [2001. Numerical simulation of sloshing flows with impact load. Applied Ocean Research 23, 53–62] and Kim et al. [2004. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Applied Ocean Research 26, 213–226] is applied. In particular, the present method focuses on the simulation of the global motion of sloshing flow, ignoring some local phenomena. The sloshing-induced forces and moments are added to wave-excitation forces and moments, and then the corresponding body motion is obtained. The developed schemes are applied for two problems: the sway motion of a box-type barge with rectangular tanks and the roll motion of a modified S175 hull with rectangular anti-rolling tank. Motion RAOs are compared with existing results, showing fair agreement. It is found that the nonlinearity of sloshing flow is very important in coupling analysis. Due to the nonlinearity of sloshing flow, ship motion shows a strong sensitivity to wave slope.  相似文献   

15.
The lift force and turning moment acting on a model towed obliquely to the direction of motion have been measured. Two models were used; one of them was tested fitted with and without a rudder. These measurements were used to determine the magnitude of the lift coefficient and the point of application of the transverse force acting on the model. The data were then used to determine the lift component of the roll damping moment. It has been found that the equivalent linear damping coefficient due to lift is a nonlinear function of the forward speed of the ship.  相似文献   

16.
On unstable ship motions resulting from strong non-linear coupling   总被引:1,自引:0,他引:1  
In this paper, the modelling of strong parametric resonance in head seas is investigated. Non-linear equations of ship motions in waves describing the couplings between heave, roll and pitch are contemplated. A third-order mathematical model is introduced, aimed at describing strong parametric excitation associated with cyclic changes of the ship restoring characteristics. A derivative model is employed to describe the coupled restoring actions up to third order. Non-linear coupling coefficients are analytically derived in terms of hull form characteristics.The main theoretical aspects of the new model are discussed. Numerical simulations obtained from the derived third-order non-linear mathematical model are compared to experimental results, corresponding to excessive motions of the model of a transom stern fishing vessel in head seas. It is shown that this enhanced model gives very realistic results and a much better comparison with the experiments than a second-order model.  相似文献   

17.
童波 《海洋工程》2017,35(4):94-99
首先介绍全球海域圆筒形装置的工程应用案例,对比圆筒形FPSO相对常规船形的优势,然后以原油储量、工艺模块甲板面积、耐波性、稳性、系泊系统、排水量等控制参数为目标,研究圆筒形FPSO主尺度选取依据,分舱原则。重点研究圆筒形装置的阻尼板结构,此为抑制运动响应的关键结构,通过模型试验方法分析对比了水平阻尼板、不同角度锥形阻尼板的特性。最后研究圆筒形装置运动性能分析方法,介绍二阶响应数值预报方法,研究垂荡和横摇运动的耦合效应,分析波频和低频运动响应,通过模型试验进行了验证,从而指导圆筒形装置设计。  相似文献   

18.
A partly non-linear time-domain numerical model is used for the prediction of parametric roll resonance in regular waves. The ship is assumed to be a system with four degrees of freedom, namely, sway, heave, roll and pitch. The non-linear incident wave and hydrostatic restoring forces/moments are evaluated considering the instantaneous wetted surface whereas the hydrodynamic forces and moments, including diffraction, are expressed in terms of convolution integrals based on the mean wetted surface. The model also accounts for non-potential roll damping expressed in an equivalent linearised form. Finally, the coupled equations of motion are solved in the time-domain referenced to a body fixed axis system.This method is applied to a range of hull forms, a post-Panamax C11 class containership, a transom stern Trawler and the ITTC-A1 containership, all travelling in regular waves. Obtained results are validated by comparison with numerical/experimental data available in the literature. A thorough investigation into the influence of the inclusion of sway motion is conducted. In addition, for the ITTC-A1 containership, an investigation is carried out into the influence of tuning the numerical model by modifying the numerical roll added inertia to match that obtained from roll decay curves.  相似文献   

19.
The angle dependence of the roll damping moment is investigated by analysing experimentally obtained free roll decay records. Two ship models were used with and without bilge keels, also results with forward speed were obtained. The analysis indicate strong angle dependence and explains why the quadratic and cubic velocity dependent damping moments are successful in many cases.  相似文献   

20.
In this paper two different models for the damping moment to introduce in the rolling equation of the ship are proposed. They contain two terms, respectively linear-quadratic and linear-cubic in the angular velocity, and furthermore they foresee a non-linear term representing the dependence of the damping from the heeling angle. These models constitute a generalization of all the models up to now used in the naval literature.With the Bogoliubov-Krilov asymptotic method approximate relations, describing the decay curve of the free oscillations and the maximum roll amplitude in synchronism condition, are obtained. The analysis shows that the choice of the more realistic damping model cannot be based on the simple verification of a good fitting of the free oscillation decay curves. It is necessary to examine also the behaviour of the forced oscillations in synchronism.Finally, a plan of experiments which allows the determination of separate values for the different non-linear damping coefficients is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号