首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The foci distribution of upper mantle earthquakes occurred between 1961 and 1972 in Himalayan, Tibetan and Hindukush regions, were studied and compared. The V-shaped pockets above a vertical plane have shown a relationship with the dip-slip type or normal faulting at the borders of the continental plates. The left-lateral and right-lateral displacements of Kirthar-Sulaiman shear zone and Brailly fault respectively found by the focal mechanism indicate a relative difference in motion between the Kashmir region and Nepal region and the uniform and right angle displacement of Tibetan Plateau has produced the Saradah depression. On the basis of seismic and geological evidences a simple tectonic model is proposed.  相似文献   

2.
3.
The Bhuj, India, earthquake of 26 January 2001, Ms 7.9, caused dams built on alluvium to sustain damage ranging from cosmetic to severe. Major damage was caused almost entirely by soil liquefaction in the alluvium. The critical factor was the level of earthquake ground motion.

The Bhuj earthquake showed that peak horizontal accelerations (PHAs)≤0.2 g were generally safe. PHAs>0.2 g were hazardous, when unconsolidated granular foundation soils were water saturated. N values of <20 are indicative of susceptibility to soil liquefaction. The Bhuj experience showed that alluvial foundation soils, subject to a PHA>0.2 g, must be evaluated over the full area beneath a new dam and all soils deemed susceptible to liquefaction must be either removed or treated. For remediating an old dam, reliable options are removal and replacement of liquefiable alluvium beneath upstream and downstream portions of the dam, combined with building berms designed to provide stability for the dam should there be a strength loss in soils beneath the dam.  相似文献   


4.
The data presented in this paper show that in historical time the Chuy Basin in Kyrgyzstan was repeatedly subjected to strong earthquakes, which affected the inhabitants and the economic and political situation at that time. The deformed buildings in the Novopokrovka site of ancient settlements situated in the central part of the basin unequivocally indicate seismic damage and subsequent abandonment of the settlement. The earthquake happened at the end of the Karakhanid epoch (the end of the 12th century A.D.). The intensity of seismic oscillations (I = VIII–IX) at the site was reinforced by unfavorable engineering geology conditions. The source of the earthquake was probably related to displacements along the piedmont Ysyk-Ata Fault located to the south of the site.  相似文献   

5.
Materials of the long- and short-term predictions of the destructive earthquake with the magnitude M LH = 6.6 ± 0.6 within the southwestern shelf of Sakhalin Island are described. The long-term prediction was issued in December 2005 and was affirmed by the Russian Council of Experts on Earthquake Forecasting and Seismic Hazard Assessment in August 2006. The August 17(18), 2006, Gornozavodsk earthquake with a magnitude of M w = 5.6 was the beginning of the realization of this prediction. Six days after its occurrence, the short-term prediction of a much more serious seismic event in the alarm region was prepared. One year later, the prediction of the August 2, 2007, Nevelsk earthquake with a magnitude of M w = 6.2 (M LH = 6.2) proved to be correct.  相似文献   

6.
7.
Chong Xu  Xiwei Xu  Guihua Yu 《Landslides》2013,10(4):421-431
On 14 April 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7.1 struck Yushu County, Qinghai Province, China. A total of 2,036 landslides were interpreted from aerial photographs and satellite images, verified by selected field checking. These landslides cover about a total area of 1.194 km2. The characteristics and failure mechanisms of these landslides are presented in this paper. The spatial distribution of the landslides is evidently strongly controlled by the locations of the main co-seismic surface fault ruptures. The landslides commonly occurred close together. Most of the landslides are small; there were only 275 individual landslide (13.5 % of the total number) surface areas larger than 1,000 m2. The landslides are of various types. They are mainly shallow, disrupted landslides, but also include rock falls, deep-seated landslides, liquefaction-induced landslides, and compound landslides. Four types of factors are identified as contributing to failure along with the strong ground shaking: natural excavation of the toes of slopes, which mean erosion of the base of the slope, surface water infiltration into slopes, co-seismic fault slipping at landslide sites, and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by the co-seismic ground shaking. To analyze the spatial distribution of the landslides, the landslide area percentage (LAP) and landslide number density (LND) were compared with peak ground acceleration (PGA), distance from co-seismic main surface fault ruptures, elevation, slope gradient, slope aspect, and lithology. The results show landslide occurrence is strongly controlled by proximity to the main surface fault ruptures, with most landslides occurring within 2.5 km of such ruptures. There is no evident correlation between landslide occurrences and PGA. Both LAP and LND have strongly positive correlations with slope gradient, and additionally, sites at elevations between 3,800 and 4,000 m are relatively susceptible to landslide occurrence; as are slopes with northeast, east, and southeast slope aspects. Q4 al-pl, N, and T3 kn 1 have more concentrated landslide activity than others. This paper provides a detailed inventory map of landslides triggered by the 2010 Yushu earthquake for future seismic landslide hazard analysis and also provides a study case of characteristics, failure mechanisms, and spatial distribution of landslides triggered by slipping-fault generated earthquake on a plateau.  相似文献   

8.
Landslides triggered by the 2016 Mj 7.3 Kumamoto,Japan, earthquake   总被引:2,自引:0,他引:2  
The aim of this study is to establish a detailed and complete inventory of the landslides triggered by the Mj 7.3 (Mw 7.0) Kumamoto, Japan, earthquake sequence of 15 April 2016 (16 April in JST). Based on high-resolution (0.5–2 m) optical satellite images, we delineated 3,467 individual landslides triggered by the earthquake, occupying an area of about 6.9 km2. Then they were validated by aerial photographs with very high-resolution (better than 0.5 m) and oblique field photos. Of them, 3,460 landslides are distributed in an elliptical area about 6000 km2, with a NE-SW directed 120-km-long long axis and a 60-km-long NW-SE trending short axis. Most of the landslides are shallow, disrupted falls and slides, with a few flow-type slides and rock and soil avalanches. The analysis of correlation between the landslides and several control factors shows the areas of elevation 1000–1200 m, stratum of Q3-Hvf, seismic intensity VIII and VIII+, and peak ground acceleration (PGA) 0.4–0.6 g register the highest landslide abundance. This study also discussed the relationship between the spatial pattern of the landslides and the seismotectonic structure featured by a strike-slip fault with a normal component and the volcanism in the study area.  相似文献   

9.
On February 13, 1981 a relatively strong earthquake occurred in the Lake Vänern region in south-central Sweden. The shock had a magnitude ofML = 3.3 and was followed within three weeks by three aftershocks, with magnitudes 0.5 ≤ ML ≤ 1.0. The focal mechanism solution of the main shock indicates reverse faulting with a strike in the N-S or NE-SW direction and a nearly horizontal compressional stress. The aftershocks were too small to yield data for a full mechanism solution, but first motions of P-waves, recorded at two stations, are consistent for the aftershocks. Dynamic source parameters, derived from Pg- and Sg-wave spectra, show similar stress drops for the main shock (2 bar) and the aftershocks (1 bar), while the differences in seismic moment (1.5·1020 resp. 4·1018dyne cm), fault length (0.7 resp. 0.2 km) and relative displacement (0.15 resp. 0.03 cm) are significant.  相似文献   

10.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China   总被引:35,自引:16,他引:19  
The 2008 Wenchuan earthquake (M s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000 potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex, and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal, and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide dam. This landslide buried seven villages and killed more than 400 people.  相似文献   

11.
据国家地震台网测定,北京时间2008年5月12日14时28分,在四川汶川县(北纬31度,东经103.4度)发生Ms 8.0级地震(图1)。宁夏、青海、甘肃、河南、山西、陕西、山东、云南、湖南、湖北、上海、重庆等省市均有震感……。这次地震造成约7万人死亡,1.7万人失踪,38多万人受伤,令人震撼。重灾区14个县(市)主要公路全部瘫痪,主要铁路、水库和城镇遭受重大破坏,特别是北川县城和映秀镇成为一片废墟,这次地震是继唐山地震之后我国又一个死亡和损失巨大的毁灭性地震。根据中国地震局台网中心和美国地质调查局公布资料,汶川地震的震中位于映秀镇西南2~3 km处,滑动面西倾,倾角40~59°,属于逆冲断裂型地震。主震之后一月时间内,记录了51次≥5级的余震,沿整个龙门山中段和北段分布。根据远程地震台站资料的反演结果显示汶川地震产生的破裂带长度超过300 km,震源深度在16~19 km,属于典型的大陆浅源地震,地震类型为单震—余震型,地震破裂属于单向扩展型,从西南震中区向北东方向快速扩展(图2)。汶川地震的发震构造为龙门山中央断裂带(传统上称为映秀-北川断裂),是这条断裂向东逆冲运动的结果,从更大的大陆动力学尺度上考虑,这次地震破裂事件是印度/欧亚大陆持续汇聚作用下青藏高原向东扩展的表现(图3)。众所周知,龙门山构造带横亘于四川盆地和青藏高原之间,主体由三条主边界断裂组成,从西到东分别命名为茂-汶断裂、映秀-北川断裂、安县-灌县断裂。这些断裂主体形成于三叠纪印支运动时期,在中新生代多次活动。晚新生代以来,伴随着青藏高原向东构造挤出,龙门山构造带中、南段强烈挤压复活和基底拆离,形成青藏东缘宏伟的逆冲推覆构造和飞来峰群,其东缘映秀断裂向东逆冲运动,使彭-灌杂岩体推覆在龙门山前陆带中生界地层之上,推覆距离在几公里以上。野外调查和震后航空照片解译结果初步分析表明,汶川地震不仅使映秀-北川断裂发生破裂,摧毁了沿断裂带建设的所有城镇与乡村,最大地震烈度达到XI级,同时也使龙门山山前断裂带(灌县-安县断裂带)发生破裂。地震产生的地表破裂构造表现为地表拱曲、挤压脊、地震鼓包、张裂隙等。地表破裂构造几何特征指示断层由西向东逆冲运动,同震垂向位移量在2.5~3 m,北川以北伴有明显的右旋走滑分量。两个地点在这次地震中受到特别关注:一个汶川县映秀镇,另一个是北川县城。映秀镇靠近震中很近,映秀断裂恰好经过该镇,从而成为断裂的命名地点。它坐落在岷江及其支流的交汇处,其中发育至少三级河流阶地。汶川地震使该镇毁灭(图版Ⅰ)。北川县城远离震中150 km之遥,但整个县城完全被地震毁灭,是汶川地震中破坏程度最大、人员伤亡最多的县城。北川县城是北川断裂的命名地点,该断裂切过县城所在的峡谷地带,呈NE-SW向延伸。这次强震产生的动能不仅使北川县城产生毁灭性破坏,同时由于地震动触发的崩滑等山地灾害,导致人员的重大伤亡(图版Ⅱ)。汶川地震带给科学家带来诸多新的思考。历史地震记录显示,龙门山断裂带在历史上没有发生过>7级地震,中小地震数量也少。而位于龙门山断裂带以北的岷山构造带和以南的川滇断裂带,在历史上均发生过震级≧7级的强震,如1933年叠溪7.5级地震和1976年松潘7.2级地震(图4),说明龙门山构造带长期处于构造应力能量的累积过程中。全球定位系统(GPS)重复测量结果也显示,横穿该带现今地壳近东西向缩短率很小,数量级在1~2 mm/a,与青藏高原其他边缘相比相对较弱。这种小应变构造区孕育大地震,在世界其它大陆地区很少见,其机理和破裂过程需要科学家深入的研究和持续的探索。  相似文献   

12.
Several thousand aftershocks of the August 1, 1975 Oroville, California, earthquake (ML = 5.7) were recorded by an 8-station field-seismic network. Focal coordinates of 104 of these events were fitted by least-squares to a plane striking N07°W and dipping 59°W; the strike (but not the dip) of this plane is in good agreement with that (N09°W) obtained from a fault-plane solution for a large foreshock 8 sec before the main shock, and it agrees fairly well with the trend (N15°W) of structural lineaments in the vicinity of Lake Oroville. The surface trace of the plane of foci passes through the Oroville Dam, as well as through surface cracking 12 km south of the dam. The main shock occurred 7 years after the filling of Lake Oroville, but only a month after the most rapid filling since 1968. The rate of aftershock occurrence during the first month decayed approximately as1/t. Event duration was measured for more than 2,000 aftershocks during August and September; average log-duration, taken over samples of 100 events, decreased gradually during this period. Close-in spectra obtained from strong-motion recordings of several of the larger aftershocks have corner frequencies that are quite high compared to other western U.S. earthquakes of similar magnitude. The Oroville earthquakes had several features in common with another Sierra Nevada earthquake sequence, near Truckee, California, in September, 1966.  相似文献   

13.
The macroseismic field of the Vrancea earthquake of March 4, 1977, characterized by the following parameters : H = 19h 21m 56s, ø = 45.8°N, γ = 26.8° E, h = 95 Km, M = 7.2, I = VIIIMSK has been analyzed. The following problems were studied : area and shape of the isoseismals of intensity III–VIII ; elongation of the isoseismal ellipses and decrease of intensity with distance. The results confirm our previous studies (Radu and Apopei, 1978) of strong intermediate earthquakes, but render evidence for some peculiarities in the seismic intensity attenuation as well.  相似文献   

14.
On 24 March 1970 an earthquake of magnitude ML 6.7 took place in the eastern Canning Basin. The earthquake was unusual because it occurred in a region where no previous earthquake had been reported and where there was no evidence of recent tectonic activity. First motion results indicate a thrusting type focal mechanism with the pressure axis approximately northeast‐southwest and dipping about 24° to the southwest. The main shock was followed, over the next two years, by many earthquakes in a zone covering 140 km by 20 km. The longitudinal axis of this zone is approximately parallel to the north‐northwest striking nodal plane determined from the first motion results, and to the trend of intrabasin faulting.

It is suggested that continental crust may be sensitive to small changes in stress pattern and consequently seismic activity may be interrelated over large distances.  相似文献   

15.
新构造、活动构造与地震地质   总被引:3,自引:0,他引:3  
新构造、活动构造和地震地质研究都是开展地震危险性评价的重要基础性地质工作。在综述新构造、活动构造和地震地质的基本含义、相互联系与区别、主要工作内容及方法的基础上,简要回顾了国内外在相关研究领域的主要进展,提出了中国活动构造与地震地质工作中应注意的主要问题和对未来工作的几点建议。最后,重点介绍了青藏高原东南缘开展活动构造体系和玉树地区活动断裂与地震地质调查研究工作所取得的主要进展与成果。  相似文献   

16.
对2005年3月6日台湾宜兰海域6.1级有感地震的速报情况进行总结,并对其地震特征进行了初步分析。  相似文献   

17.
解决开展防震宣传活动担心引起谣传问题 ,必须做到 :一、更新观念 ,与时俱进 ;二、端正认识 ,进一步理解自己的职能 ;三、把积极、大胆开展活动作为解决谣传问题的根本途径 ;四、注意工作方法 ,尽量避免群众“担心”。  相似文献   

18.
本文通过分析福州、小陶地震的波形记录及各种定位参数 ,总结了该地区的震相特征和各台的震级情况 ,结合地震速报的规程 ,提出了对这两个地区地震速报的建议。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号