首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Tyrrhenian region of central Italy, late Quaternary fossil travertines are widespread along two major regional structures: the Tiber Valley and the Ancona-Anzio line. The origin and transport of spring waters from which travertines precipitate are elucidated by chemical and isotopic studies of the travertines and associated thermal springs and gas vents. There are consistent differences in the geochemical and isotopic signatures of thermal spring waters, gas vents and present and fossil travertines between east and west of the Tiber Valley. West of the Tiber Valley, δ13C of CO2 discharged from gas vents and δ13C of fossil travertines are higher than those to the east. To the west the travertines have higher strontium contents, and gases emitted from vents have higher 3He/4He ratios and lower N2 contents, than to the east. Fossil travertines to the west have characteristics typical of thermogene (thermal spring) origin, whereas those to the east have meteogene (low-temperature) characteristics (including abundant plant casts and organic impurities). The regional geochemical differences in travertines and fluid compositions across the Tiber Valley are interpreted with a model of regional fluid flow. The regional Mesozoic limestone aquifer is recharged in the main axis of the Apennine chain, and the groundwater flows westward and is discharged at springs. The travertine-precipitating waters east of the Tiber Valley have shallower flow paths than those to the west. Because of the comparatively short fluid flow paths and low (normal) heat flow, the groundwaters to the east of the Tiber Valley are cold and have CO2 isotopic signatures, indicating a significant biogenic contribution acquired from soils in the recharge area and limited deeply derived CO2. In contrast, spring waters west of the Tiber Valley have been conductively heated during transit in these high heat-flow areas and have incorporated a comparatively large quantity of CO2 derived from decarbonation of limestone. The elevated strontium content of the thermal spring water west of the Tiber Valley is attributed to deep circulation and dissolution of a Triassic evaporite unit that is stratigraphically beneath the Mesozoic limestone. U-series age dates of fossil travertines indicate three main periods of travertine formation (ka): 220-240, 120-140 and 60-70. Based on the regional flow model correlating travertine deposition at thermal springs and precipitation in the recharge area, we suggest that pluvial activity was enhanced during these periods. Our study suggests that travertines preserve a valuable record of paleofluid composition and paleoprecipitation and are thus useful for reconstructing paleohydrology and paleoclimate.  相似文献   

2.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

3.
We propose a novel Lg attenuation tomography model (QLg tomography) for the state of Gujarat, Western India, using earthquake data recorded by the Gujarat Seismic Network, operated by the Institute of Seismological Research in Gandhinagar. The waveform dataset consist of 400 3-component recordings, produced by 60 earthquakes with magnitude (ML) spanning from 3.6 to 5.1, recorded at 60 seismic stations having epicentral distances spanning between 200 and 500 km. Spectral amplitude decays for Lg wave displacement were obtained by generalized inversion at 17 frequencies spanning between 0.9 and 9 Hz. Lg wave propagation efficiency was measured by Lg/Pn spectral ratio categorizing as efficient ratio ≥6 for 86%, intermediate ratio of 3–6 for 10% and inefficient ratio <3 for 4% paths of total 400 ray paths. The earthquake size and quality of waveform recorded at dense network found sufficient to resolve lateral variation of QLg in Gujarat.Average power-law attenuation relationship obtained for Gujarat as QLg(f) = 234f0.64, which corresponds to high attenuation in comparison to peninsular India shield region and other several regions around the world. QLg tomography resolves the highly attenuating crust of extremely fractured Saurashtra region and tectonically active Kachchh region. The Gujarat average attenuation is also lying in between them. The low attenuation in Cambay and Narmada rift basins and extremely low attenuation in patch of Surendranagar area is identified. This study is the first attempt and can be utilized as pivotal criteria for scenario hazard assessment, as maximum hazard has been reported in highly attenuating tectonically active Kachchh region and in low attenuating Cambay, Narmada and Surendranagar regions. The site and source terms are also obtained along with the QLg inversion. The estimated site responses are comparable with observed local geological condition and agree with the previously reported site amplifications at the same sites. The source terms are comparable with local magnitude estimated from Network. The Mw (Lg) is nearly equivalent to ML (GSN) and the slight differences are noted for larger magnitude events.  相似文献   

4.
The Bouguer anomaly and the total intensity magnetic maps of Saurashtra have delineated six circular gravity highs and magnetic anomalies of 40-60 mGal (10−5m/s2) and 800-1000 nT, respectively. Three of them in western Saurashtra coincide with known volcanic plugs associated with Deccan Volcanic Province (DVP), while the other three in SE Saurashtra coincide with rather concealed plugs exposed partially. The DVP represents different phases of eruption during 65.5±2.5 Ma from the Reunion plume. The geochemical data of the exposed rock samples from these plugs exhibit a wide variation in source composition, which varies from ultramafic/mafic to felsic composition of volcanic plugs in western Saurashtra and an alkaline composition for those in SE Saurashtra. Detailed studies of granophyres and alkaline rocks from these volcanic plugs reveal a calc-alkaline differentiation trend and a continental tectonic setting of emplacement. The alkaline plugs of SE Saurashtra are associated with NE-SW oriented structural trends, related to the Gulf of Cambay and the Cambay rift basin along the track of the Reunion plume. This indicates a deeper source for these plugs compared to those in the western part and may represent the primary source magma. The Junagadh plug with well differentiated ring complexes in western Saurashtra shows well defined centers of magnetic anomaly while the magnetic anomalies due to other plugs are diffused though of the same amplitude. This implies that other plugs are also associated with mafic/ultramafic components, which may not be differentiated and may be present at subsurface levels. Paleomagnetic measurements on surface rock samples from DVP in Saurashtra suggest a susceptibility of 5.5×10−2 SI units with an average Koenigsberger ratio (Qn) of almost one and average direction of remanent magnetization of D=147.4° and I=+56.1°. The virtual geomagnetic pole (VGP) position computed from the mean direction of magnetization for the volcanic plugs and Deccan basalt of Saurashtra is 30°N and 74°W, which is close to the VGP position corresponding to the early phases of Deccan eruption. Modeling of gravity and magnetic anomalies along two representative profiles across Junagadh and Barda volcanic plugs suggest a bulk density of 2900 and 2880 kg/m3, respectively and susceptibility of 3.14×10−2 SI units with a Qn ratio of 0.56 which are within the range of their values obtained from laboratory measurements on exposed rock samples. The same order of gravity and magnetic anomalies observed over the volcanic plugs of Saurashtra indicates almost similar bulk physical properties for them. The inferred directions of magnetization from magnetic anomalies, however, are D=337° and 340° and I=−38° and −50° which represent the bulk direction of magnetization and also indicate a reversal of the magnetic field during the eruption of these plugs. Some of these plugs are associated with seismic activities of magnitude ≤4 at their contacts. Based on this analysis, other circular/semi-circular gravity highs of NW India can be qualitatively attributed to similar subsurface volcanic plugs.  相似文献   

5.
Geothermal gases from submarine and subaerial hot springs in Ensenada, Baja California Norte, Mexico, were sampled for determination of gas chemistry and helium, nitrogen and stable carbon isotope composition. The submarine hot spring gas is primarily nitrogen (56.1% by volume) and methane (43.5% by volume), whereas nearby subaerial hot spring gases are predominantly nitrogen (95–99% by volume). The N2/Ar ratios and σ 15N values of the subaerial hot spring gas indicate that it is atmospheric air, depleted in oxygen and enriched in helium. The submarine hot spring gas is most probably derived from marine sediments of Cretaceous age rich in organic matter. CH4 is a major component of the gas mixture (σ 13C = −44.05%0), with only minor amounts of CO2 (σ13C= −10.46%0). The σ15N of N2 is + 0.2%0 with a very high N2/Ar ratio of 160. The calculated isotopic equilibra tion temperature for CH4---CO2 carbon exchange at depth in the Punta Banda submarine geothermal field is approximately 200°C in agreement with other geothermometry estimates. The 3He/4He ratios of the hot spring gases range from 0.3 to 0.6 times the atmospheric ratio, indicating that helium is predominantly derived from the radioactive decay of U and Th within the continental crust. Thus, not all submarine hydrothermal systems are effective vehicles for mantle degassing of primordial helium.  相似文献   

6.
Heat flow values from some additional locations in the Cenozoic Cambay Basin have been determined. Together with the previously published data, they show that the heat flow is moderate (55–67 mW/m′) in the southern part of the basin towards Broach and Ankleswar, and that there is a clear trend of high heat flow (75–93 mW/m2; range of average values for six different, widely separated, locations) in a part of the basin located north of the Mahisagan river between Cambay and Mehsana along a stretch of about 140 km. Conductive steady state geotherms, calculated using observed high surface heat flow values and appropriate models show, beneath the Cambay-Mehsana area, a large degree of melting in the lower crust and upper mantle, which is not suggested by the existing geodata. Considering this aspect and taking into account the existence of a normal crust about 37 km thick below the Cambay-Tarapur and Ahmedabad-Mehsana blocks (as obtained from deep seismic soundings), it has been inferred that the heat flow anomaly is due to transient thermal perturbations introduced from tectonic activity in the form of magmatic intrusions. A careful analysis of heat flow, gravity and other related geodata point out and support the possibility of a Miocene/Pliocene basic intrusive body at a depth of around 10 km under the Cambay-Mehsana area. Further, the consistent trend of the thermal and gravity fields indicates thinning of the postulated intrusive body from Cambay towards Mehsana.  相似文献   

7.
We have analysed volatiles (H2O, He, Ar, CO2) in differentiated (basaltic andesite, dacite) volcanic glasses dredged at a depth of ca. 2000 m in the eastern part of the Manus Basin between 151°20′ and 152°10′ E. These samples have Sr–O–B isotopic ratios that show that they most likely represent lavas evolved from a common magma source. Since these glasses are very fresh, they provide a unique opportunity to study the behaviour of magmatic volatiles during assimilation–fractional crystallisation–degassing (AFCD). The samples are highly vesicular (up to 18%) and the volatiles trapped in vesicles consist predominantly of H2O with minor amounts of CO2, and the concentration of water in the glasses indicates that H2O saturation was attained. Rare gases except helium are atmospheric in origin, and the 3He/4He ratios and the CO2/3He ratios are respectively lower and higher than those typical of Mid-Ocean Ridge Basalt (MORB), and appear to correlate with the degree of differentiation. AFCD allows efficient degassing of mantle-derived volatiles and contribution of crust-derived and atmosphere-derived volatiles. Given the widespread occurrence of differentiated magmatism at arcs, we suggest that AFCD is responsible for large-scale occurrence of 3He-rich crustal fluids and of atmospheric-like rare gases in arc emanations, and that most of the volatiles are lost continuously during fractional crystallisation, rather than catastrophically during eruptions.  相似文献   

8.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

9.
This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation 4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have D values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1–7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4–CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.  相似文献   

10.
Physical, chemical and isotopic parameters were measured in fumaroles at the Vulcano crater and in drowned fumaroles near the beach. The data were used to define boundary conditions for possible conceptual models of the system.Crater fumaroles: time variations of CO2 and SO2 concentrations indicate mixing of saline gas-rich water with local fresh water. Cl/Br ratios of 300– 400 favour sea-water as a major source for Cl, Brand part of the water in the fumaroles. Cl concentrations and D values revealed, independently, amixing of 0.75 sea-water with 0.25 local freshwaterin furmarole F-5 during September 1982.Patterns of parameter correlation and mass balances reveal that CO2, S, NH3 and B originate from sources other than sea water. The CO2 value of 13C = – 2%o favours, at least partial, origin from decomposition of sedimentary rocks rather than mantle-derived material. Radiogenic4He(1.3 × lO–3 ccSTP/g water) and radiogenic40Ar(10.6 × 10–4 ccSTP/g water) are observed, (4He/40Ar)radiogenic = 1.2, well in the range of values observed in geothermal systems.Drowned fumaroles: strongly bubbling gas at a pond and at the beachappears to have the same origin and initial compositionas the crater fumaroles (2 km away). The fumarolic gas is modified by depletion of the reactive gases, caused by dissolution in shallow-water. Atmospheric Ne, Ar, Kr and Xe are addeden route, some radiogenic He and Ar are maintained. The Vulcano system seems to be strongly influenced by the contribution of sea-water and decomposition of sedimentary rocks. Evidence of magmatic contributions is mainly derived from heat.  相似文献   

11.
The concentrations of helium and carbon in fluorite associated with Cretaceous to Neogene (90–13 Ma) granitic magmatism in the Japanese arc have been measured. Concentrations of Li, U, Th and Gd were measured to correct for secondary generated 3He. The CO2/3He of fluorites are almost uniform (1.5×1010–4×1010) and in fair agreement with the range of present island arc volcanic gases. The calculated mantle C contribution in the Mesozoic subduction zone appear to have been identical to the present one (7–19%) indicating that the C flux from the mantle in supra-subduction zone environments has remained fairly constant during the past 70 million years.  相似文献   

12.
After the earthquakes of September 26, 1997, that hit the Umbria-Marcheboundary (Apennine, Central Italy), with a maximum 6.0 Mw, aprogram of geochemical surveying together with a collection ofhydrogeological changes episodes was extended throughout theepicentre-area, taking the yearly period of the seismic sequence as a whole.After a first areal screening, the Bagni di Triponzo thermal spring wasselected for a discrete temporal monitoring (weekly and monthly basis),being the unique thermal spring throughout the epicentre area. This sitedeserves peculiar interest in deepening the knowledge about deep fluidscirculation changing during seismicity.Laboratory and on-field analyses included major, minor and trace elementsas well as dissolved gases (He, Ar, CH4, CO2, H2S,222Rn, NH4, As, Li, Fe, B, etc...) and selected isotopic ratios(C, H, O, He, Sr, Cl), meaningful from tectonic point of view.The chemistry and isotopic chemistry of the spring were fully outlined anddiscussed, pointing out the main process involving the thermal aquifer: thewater-rock interaction inside the Evaporite Triassic Basement (ETB),possibly involving also the Paleozoic Crystalline Basement. On theother hand, sudden and apparent geochemical and hydrogeologicalvariations during the seismic sequence ruled out an evolution in thewater-rock interaction processes. They occurred both at depth, i.e.,induced by fluid remobilization within the crust explained by the Coseismic Strain Model and by the Fault Valve Activity Model, and in the shallow part of the reservoir (i.e., meteoric watercontamination). A statistical multivariable analysis (Factor Analysis) wasaccomplished to better constrain the correlation between the paroxysmalphases of the seismic sequence and the observed trends and spike-likeanomalies. The groundwater variations was inferred to occur mainly insidethe ETB, from depth (1–2 km) up to surface, particularly in associationof the Sellano earthquake (14/10/1997) and of the seismic re-activationof the sequence at the end of March 1998 (Gualdo Tadino-Rigali andVerchiano areas). The lack of deeper input from below the ETB (slightsignature of PCB), as the lack of He mantle signature, during the seismicperiod as a whole, accounted for seismogenic fault segments rooted onlyin the crust. The results also provide useful information about theearthquake-related response mechanisms occurring at this site, thatrepresent the basic task for planning and managing the impendinghydro-geochemical network aimed at defining the relationships betweenseismic cycle, fluids and reliable earthquake forerunners.  相似文献   

13.
The local earthquake waveforms recorded on broadband seismograph network of Institute of Seismological Research in Gujarat, India have been analyzed to understand the attenuation of high frequency (2–25 Hz) P and S waves in the region. The frequency dependent relationships for quality factors for P (Q P) and S (Q S) waves have been obtained using the spectral ratio method for three regions namely, Kachchh, Saurashtra and Mainland Gujarat. The earthquakes recorded at nine stations of Kachchh, five stations of Saurashtra and one station in mainland Gujarat have been used for this analysis. The estimated relations for average Q P and Q S are: Q P = (105 ± 2) f 0.82 ± 0.01, Q S = (74 ± 2) f 1.06 ± 0.01 for Kachchh region; Q P = (148 ± 2) f 0.92 ± 0.01, Q S = (149 ± 14) f 1.43 ± 0.05 for Saurashtra region and Q P = (163 ± 7) f 0.77 ± 0.03, Q S = (118 ± 34) f 0.65 ± 0.14 for mainland Gujarat region. The low Q (<200) and high exponent of f (>0.5) as obtained from present analysis indicate the predominant seismic activities in the region. The lowest Q values obtained for the Kachchh region implies that the area is relatively more attenuative and heterogeneous than other two regions. A comparison between Q S estimated in this study and coda Q (Qc) previously reported by others for Kachchh region shows that Q C > Q S for the frequency range of interest showing the enrichment of coda waves and the importance of scattering attenuation to the attenuation of S waves in the Kachchh region infested with faults and fractures. The Q S/Q P ratio is found to be less than 1 for Kachchh and Mainland Gujarat regions and close to unity for Saurashtra region. This reflects the difference in the geological composition of rocks in the regions. The frequency dependent relations developed in this study could be used for the estimation of earthquake source parameters as well as for simulating the strong earthquake ground motions in the region.  相似文献   

14.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

15.
This study presents baseline data for future geochemical monitoring of the active Tacaná volcano–hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/S (5.9 ± 0.5) and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc, Tacaná.  相似文献   

16.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   

17.
The attenuation characteristics based on coda waves of two areas—Jamnagar and Junagarh of Saurashtra, Gujarat (India)—have been investigated in the present study. The frequency dependent relationships have been developed for both the areas using single back scattering model. The broadband waveforms of the vertical components of 33 earthquakes (Mw 1.5–3.5) recorded at six stations of the Jamnagar area, and broadband waveforms of 68 earthquakes (Mw 1.6–5) recorded at five stations of the Junagarh area have been used for the analysis. The estimated relations for the Junagarh area are: Q c?=?(158?±?5)f(0.99±0.04) (lapse time : 20?s), Q c?=?(170?±?4.4)f(0.97±0.02) (lapse time : 30?s) and Q c?=?(229?±?6.6)f(0.94±0.03) (lapse time : 40?s) and for the Jamnagar area are: Q c?=?(178?±?3)f(0.95±0.05) (lapse time : 20?s), Q c?=?(224?±?6)f(0.98±0.06) (lapse time : 30?s) and Q c?=?(282?±?7)f(0.91±0.03) (lapse time : 40?s). These are the first estimates for the areas under consideration. The Junagarh area appears to be more attenuative as compared to the Jamnagar area. The increase in Q c values with lapse time found here for both the areas show the depth dependence of Q c as longer lapse time windows will sample larger area. The rate of decay of attenuation (Q ?1) with frequency for the relations obtained here is found to be comparable with those of other regions of the world though the absolute values differ. A comparison of the coda-Q estimated for the Saurashtra region with those of the nearby Kachchh region shows that the Saurashtra region is less heterogeneous. The obtained relations are expected to be useful for the estimation of source parameters of the earthquakes in the Saurashtra region of Gujarat where no such relations were available earlier. These relations are also important for the simulation of earthquake strong ground motions in the region.  相似文献   

18.
The Teide volcano (3717 m) is the central structure of the island of Tenerife and at present its morphology is that of a stratovolcano which has grown on a large caldera with a collapse 17 km in diameter, which was generated some 0.6 million years ago.The different studies that have been carried out seem to indicate that, in a oversimplified model, there is an intermediate magma chamber with an approximate volume of 30 km3 and located 2–3 km below the actual base of the caldera, i.e., almost at sea level, with a temperature of 430 ± 50°C, and a pressure of 400 ± 100 bar.The summit fumarole emissions are 85°C and are formed mainly of CO2 with small amounts of sulphur species, H2, CH4 and He. The water vapor (68–82%) emitted with the gases comes from the vaporization of a perched aquifer in the upper cone, as shown by the isotopic analyses.  相似文献   

19.
This paper deals with the chemical and isotopic compositions of escaped gases from the Rehai geothermal area in Tengchong county of Yunnan Province. Results indicate that there is the mantle-derived magmatic intrusion in shallow crust at this area. Modern mantle-derived magmatic volatiles are being released currently in a steady stream by way of active faults. The escaped gases are mostly composed of CO2, together with subordinate amounts of H2S, N2, H2, CH4, SO2, CO and He. At the studied area, the north-south directed fault is the deepest, and it may be interlinked with the deep-seated thermal reservoir that would be directly recharged by the mantle-derived magmatic volatile. The He, C isotopic evidence reveals that the modern active magma beneath Rehai area may originate from the historical mantle-derived magma which caused the latest eruptive activity of volcanoes in that region.  相似文献   

20.
The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high pCO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol%) with an appreciable content of H2S (0.8–2%). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February–March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8–25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号