首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The volume and composition of volcanic rocks associated withthe Gregory rift are interpreted in the light of inversionsperformed on the REE concentrations of the most magnesian basalts.When the estimated volume of salic rock ({small tilde}88 000km3) is converted into basalt ({small tilde}792 000 km3) thetotal volume of basaltic melt generated over the last 30 Myis at least 924 000 km3, corresponding to an average rate ofmelt production of {small tilde}0•03 km3/yr and an averagemelt thickness of between 7 and 26 km everywhere beneath therift. The mean compositions of the basaltic magmas erupted withinthe rift and on the rift flanks during the Upper Oligocene andMiocene, the Pliocene, and the Quaternary are taken to be representativeof the average compositions of melts produced by fractionalmelting in the asthenospheric mantle. When the REE concentrationsof the observed average compositions are inverted they suggestthat much of the melt was produced in the depth and temperaturerange of the transition from garnet to spinel peridotite. Fora mantle potential temperature of {small tilde}1500C the topof the melting region predicted from the inversions is at {smalltilde}70 km beneath the rift axis and {small tilde}80 km beneaththe rift flanks. Within the rift zone the predicted thicknessof melt increases from the Upper Oligocene and Miocene to thePliocene and is always greater than that predicted for the riftflanks, and the timeaveraged thickness of melt predicted is0/5 km. To generate the observed volume of melt the asthenosphericmantle must continually upwell through the melting region (extendingfrom 70 to 150 km) with a vertical velocity of between 40 and140 mm/yr. The results suggest that, volumetrically and compositionally,magmatic activity associated with the Gregory rift is quantitativelyconsistent with a model of a mantle plume upwelling beneaththinned continental lithosphere. Predictions made by such amodel are in broad agreement with geophysical observations. * Present address/reprint requests to: B.P. Exploration, 4/5 Long Walk, Stockley Park, Uxbridge UB11 1BP, UK  相似文献   

2.
A convergent margin magma series with characteristic low Nband Ta abundances and enrichments in alkalis and alkaline earthsis intercalated with typical intraplate alkalic basalts in aback-arc setting, 200–250 km above the Wadati-Benioffzone on the North Island, New Zealand. These two contrastingmagma types, together with late-stage K-rich maflc lavas, wereerupted over a short time period (1{dot}60–2{dot}74 Ma)and constitute the Alexandra Volcanics. Field relationshipsindicate that these diverse magma types were contemporaneous,and thus their mantle source regions coexisted, in a singletectonic environment. The convergent margin magma series forms a linear chain of stratovolcanoesaligned at right angles to the present subduction zone. Closed-systempolybaric fractional crystallization models can explain theevolution from ankaramites to transitional olivine basalts toolivine tholeiites to high-Al basalts to medium- and high-Kandesites. The most primitive lavas have geochemical (high LIL/LREEand LIL/HFS element ratios) and Sr, Nd, and Pb isotopic compositionstypical of convergent margin magmas. Calculated source compositionssuggest that three components are involved: a MORB component,a component derived from subducted oceanic crust, and a contributionfrom subducted sediments. The alkalic basalts occur as dispersed monogenetic volcanoesand are intercalated with the larger convergent margin stratovolcanocs.These basalts are enriched in LILE, LREE, Nb, and Ta, and havelow Ba/Nb and Ba/La ratios, all of which are characteristicof ocean island (intraplate) basalts (OIBs). Their relativelyhigh Nd (+5{dot}5 and low 87Sr/86Sr(0{dot}703l–0{dot}7036)are also typical of OIBs. These alkalic magmas were derivedfrom the underlying continental lithospheric mantle that hasbeen enriched by upward-migrating silica-undersaturated melts,probably including volatiles, from the low- velocity zone. Asubducted slab component is not required to account for theirincompatible element enriched character. The K-rich mafic lavas, basanites, and absarokites are volumetricallyminor and cap the largest of the stratovolcanoes, Pirongia.The basanites have geochemical and isotopic compositions whichsuggest they are mixtures of multiple source components, includingthe alkalic and convergent margin region.  相似文献   

3.
Metamorphic isograds and time-integrated fluid fluxes were mappedover the 1500 km2 exposure of the Waits River Formation, easternVermont, south of latitude 4430'N. Isograds based on the appearanceof oligoclase, biotite, and amphibole in metacarbonate rocksdefine elongated metamorphic highs centered on the axes of twolarge antiforms. The highest-grade isograd based on the appearanceof diopside is closely associated spatially with synmetamorphicgranitic plutons. Pressure, calculated from mineral equilibria,was fairly uniform in the area, 7 1.5 kb; calculated temperatureincreases from {small tilde} 480C at the lowest grades in thearea to {small tilde} 575C in the diopside zone. CalculatedXco2f equilibrium metamorphic fluid increases from <0-03at the lowest grades to 0.2 in the amphibole zone and decreasesto 0.07 in the diopside zone. Time-integrated fluid fluxesincrease with increasing metamorphic grade, with the followingmean values for each metamorphic zone (in cm3/cm2): ankerite-oligoclasezone, 1 x 104; biotite zone, 7 x 104; amphibole zone, 2 x 105;diopside zone, 7 x 105. The mapped pattern of time-integrated fluxes delineates twolarge deep-seated ({small tilde} 25-km depth) regional metamorphichydrothermal systems, each centered on one of the major antiforms.Fluid flowed subhorizontally perpendicular to the axis of theantiforms from their low-temperature flanks to their hot axialregions and drove prograde decarbonation reactions as they went.Along the axes of the antiforms fluid flow was further focusedaround synmetamorphic granitic intrusions. In the hot axialregion fluid changed direction and flowed subvertically outof the metamorphic terrane, precipitating quartz veins. Estimatesof the total recharge, based on progress of prograde decarbonationreactions, nearly match estimates of the total discharge, basedon measured quartz vein abundance, (2-10) x 1012 cm3 fluid percm system measured parallel to the axes of the antiforms. Withinthe axial regions fluids had lower XCO2 and rocks record greatertime-integrated fluxes close to the intrusions than at positionsmore than {small tilde} 5 km from them. The differences in bothfluid composition and time-integrated flux can be explainedby mixing close to the intrusions of regional metamorphic fluidsof XCO2/ with fluids from another source with XCO2{small tilde}0 in the approximate volume ratio of 1:2.  相似文献   

4.
The lithospheric and sublithospheric processes associated with the transition from continental to oceanic magmatism during continental rifting are poorly understood, but may be investigated in the central Main Ethiopian Rift (MER) using Quaternary xenolith-bearing basalts. Explosive eruptions in the Debre Zeyit (Bishoftu) and Butajira regions, offset 20 km to the west of the contemporaneous main rift axis, host Al-augite, norite and lherzolite xenoliths, xenocrysts and megacrysts. Al-augite xenoliths and megacrysts derived from pressures up to 10 kb are the dominant inclusion in these recent basalts, which were generated as small degree partial melts of fertile peridotite between 15 and 25 kb. Neither the xenoliths nor the host basalts exhibit signs of carbonatitic or hydrous (amphibole + phlogopite) metasomatism, suggesting that infiltration of silicate melts resulting in pervasive Al-augite dyking/veining dominates the regional lithospheric mantle. Recent geophysical evidence has indicated that such veining/dyking is pervasive and segmented, supporting the connection of these Al-augite dykes/veins to the formation of a proto ridge axis. Al-augite xenoliths and megacrysts have been reported in other continental rift settings, suggesting that silicate melt metasomatism resulting in Al-augite dykes/veins is a fundamental processes attendant to continental rift development.  相似文献   

5.
Eocene igneous rocks from the Abrolhos Islands and surroundingsedimentary platform, offshore Brazil, 18?S, are largely Ti-richbasalt and diabase (4–6 wt.% TiO2), and cumulate rockssuch as wehrlite. Despite high Ti, incompatible-element abundancesare relatively low (e.g., K2O {small tilde} 1 wt.%; P2O5 0.5%; Zr 225 ppm; Rb 23 ppm; Ba 275 ppm); LREE enrichment yieldsLa/YbN {small tilde}8. Compared to other mafic rocks of theSouth Atlantic region, such as Mesozoic high-Ti dikes ({smalltilde}5 wt.% TiO2) and basalts (3–4 wt.% TiO2) of theSerra Geral (Paran?, southern Brazil) province, and high-Tibasalts ({small tilde}4 wt% TiO2) of some South Atlantic features(Walvis, southwest Indian ridge), Abrolhos basalts differ bylower incompatible-element concentrations and/or by isotopiccompositions that emphasize depleted characteristics (Sr–12;Nd 3) relative to bulk earth. Abrolhos isotopic compositionsdo, however, match those of some S. Atlantic islands (e.g.,Pb like those of nearby Trindade), and conform generally toDupal anomaly contours. Abrolhos high-Ti basalts can be modeled as liquids from about90% crystallization of parent picritic liquid emplaced nearthe base of the Brazilian crustal margin; no mantle geochemicalanomaly or special metasomatism are needed to account for theTi contents. Isotopic and trace-clement compositions (e.g.,Zr, Nb, Y) of the Abrolhos province suggest parentage in a mantlerepresenting a plume of bulk earth or ‘enriched’composition that interacted with overlying depleted mantle.  相似文献   

6.
The well-known Pliocene to Quaternary Rio Grande rift of northern New Mexico and southern Colorado is distinctly different from the Miocene rift, especially in structural style. Prior to approximately 21 Ma, there was little extension or rift-basin development. Uppermost Oligocene and Lower Miocene strata were deposited as broad volcaniclastic aprons, with no significant evidence of syn-depositional faulting, in contrast to younger deposits. The only documented areas of extensional faulting and stratal rotation older than 21 Ma occur within or close to magmatic centers. Early rift basins (21-10 Ma) developed as half grabens progressively tilted in hanging walls of normal faults that primarily reactivated Laramide (Eocene) reverse faults: (1) the San Luis basin tilted eastward as the Sangre de Cristo normal fault reactivated westward-dipping Laramide reverse faults; (2) the Tesuque basin tilted westward as normal faults reactivated eastward-dipping Laramide reverse faults of Sierra Nacimiento and related features; and (3) the Belen basin experienced complex tilting as diverse normal faults reactivated variably dipping Laramide reverse faults. Some of these early-rift faults remain active, whereas others became inactive starting near 10 Ma, as new faults broke across Laramide and early-rift features. The Embudo transfer zone linked normal faults along the east side of the San Luis basin to the Pajarito, La Bajada, San Francisco, and Rincon fault zones at this time. Normal faults along the northwest side of the Miocene Tesuque basin became inactive at the same time that rapid uplift of the Sandia Mountains as a footwall block began at about 10 Ma. This shifting of normal-fault activity resulted in reversal of tilt direction from westward for the Miocene Tesuque basin to eastward for the modern Albuquerque basin. Uplift and erosion of early-rift deposits along the northwest side of the Albuquerque basin have resulted.

This two-stage model for evolution of the Rio Grande rift in north-central New Mexico and southern Colorado is fundamentally different from previous two-stage models, which described Oligo-Miocene volcaniclastic aprons as “early rift deposits,” and related them to extensional structures. Rather, development of half grabens began around 21 Ma, with dominance of negative inversion of Laramide reverse and thrust faults. Regional change in extension direction led to the abandonment of some faults and the initiation of new faults at 10-8 Ma in the Rio Grande rift. The biggest change occurred in the Tesuque basin, as the western boundary fault became inactive during growth of the Jemez volcanic field, and the Sandia Mountains began their rapid rise as the northern Albuquerque basin tilted to the east. Continued regional uplift, and integration and incision of the Rio Grande and tributaries, have occurred during the last 5 million years, with the course of the river tending to follow the downdropped side of each modern half graben.  相似文献   

7.
The hornblende garbenschist horizon of the Lower Schieferhulleseries (LSH) in the SW Tauern Window, Austria, contains theassemblage hornblende + kyanite + staurolite + garnet + biotite+ epidote + plagioclase + ankerite + quartz + rutile + ilmenite,with either chlorite or paragonite present in all samples. Theseassemblages are divariant in the system SiO2-Al2O3-TiO2-Fe2O3-MgO-FeO-MnO-CaO-Na2O-K2O-H2O-CO2.Garnet-biotite geothermometry yields temperatures of final equilibrationof {small tilde}550 °C, and garnet-plagioclase-kyanite-quartzgeobarometry indicates pressures of 6–8 kb for the matrixassemblage and 9–10 kb for plagioclase inclusions in garnet.Quantitative modelling of zoned garnet, hornblende, and plagioclaseindicates growth and equilibration along a decompression pathfrom {small tilde}530 °C, 10 kb to {small tilde}550 °C,7 kb. Fluid inclusion data constrain the uplift path to havepassed through a point at {small tilde} 375 °C, 1.5 kb. These data permit the construction of a relatively completeP-T loop for metamorphism associated with the Alpine orogeniccycle in the LSH of the SW Tauern Window. The maximum pressureconditions ({small tilde}10 kb at 530 °C) recorded alongthis loop are considerably higher than previous estimates of5–7 kb for the region. Simple overthrust models developedfor the Tauern Window cannot account for pressures of this magnitude;a more likely scenario involves partial subduction of the rocksto a depth of {small tilde}35 km, followed by prolonged heatingin response to decay of the subduction isotherms. Initial upliftappears to have been rapid and occurred along a nearly isothermalpath. Significant cooling did not occur until the rocks werewithin {small tilde}5 km of the surface. Detailed tectonic modelsfor the evolution of the Tauern Window must be able to accountfor the quantitative features of the P-T loop.  相似文献   

8.
The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ±1.2 km thick with its upper surface at an approximate depth of 6.0 ±0.6 km, and its average density is {dy2935} kg/m3. Calculated dimension of the high density body in the upper crust is 300 ±30 km in length and 25 ±2.5 to 40 ±4 km in width. Three-dimensional gravity modeling of +10mgal to -30mgal Bouguer gravity highs along the intraplate Narmada-Tapti rift indicates the presence of eight small isolated high density mafic bodies with an average density of {dy2961} kg/m3. These mafic bodies are convex upward and their top surface is estimated at an average depth of 6.5 ±0.6 (between 6 and 8km). These isolated mafic bodies have an average length of 23.8 ±2.4km and width of 15.9 ±1.5km. Estimated average thickness of these mafic bodies is 12.4±1.2km. The difference in shape, length and width of these high density mafic bodies along the western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of large, ellipsoidal high density mafic bodies along the western continental margin and small, isolated mafic bodies along the Narmada-Tapti rift are related to lineament-reactivation and subsequent rifting due to interaction of hot mantle plume with the lithospheric weaknesses (lineaments) along the path of Indian plate motion over the Réunion hotspot. Mafic bodies formed in the upper lithosphere as magma chambers along the western continental margin and the intraplate Narmada-Tapti rifts at estimated depths between 6 and 8 km from the surface (consistent with geological, petrological and geochemical models) appear to be the major reservoirs for Deccan flood basalt volcanism at approximately 65 Ma.  相似文献   

9.
Products of Pliocene (2–4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present beneath NW Colorado during the mid-late Cenozoic. We argue that the hawaiite source must have originally existed as arc-source mantle enriched in LILE, generated during Mesozoic to early Cenozoic subduction at the western margin of North America. This arc-source mantle lost K, Rb and Ba, but not Th or LREE, prior to magmagenesis. Selective element loss may have occurred during lithospheric thinning and uprise of hydrated phlogopitebearing peridotite-possibly as a thermal boundary layer between lithosphere and asthenosphere — to shallow mantle depths, with consequent conversion of phlogopite to amphibole (an inferior host for K, Rb and Ba). We suggest that this occurred during the early extensional phase of the northern RGR. Further extension was accompanied by partial melting and release of magma from this source and the underlying asthenosphere, which by the Pliocene was of oceanic type. The hawaiite source mantle is the product of a long history of subduction succeeded by lithospheric extension of the formerly overriding plate. Similar chemical signatures may have developed in the mantle beneath other regions with comparable histories.  相似文献   

10.
Glasses from Mauna Loa pillow basalts, recent subaerial vents, and inclusions in olivine were analyzed for S, Cl, F, and major elements by electron microprobe. Select submarine glasses were also analyzed for H2O and CO2 by infrared spectroscopy. The compositional variation of these tholeiitic glasses is dominantly controlled by crystal fractionation and they indicate quenching temperatures of 1,115-1,196 °C. Submarine rift zone glasses have higher volatile abundances (except F) than nearly all other submarine and subaerial glasses with the maximum concentrations increasing with water depth. The overwhelming dominance of degassed glasses on the submarine flanks of Mauna Loa implies that much of volcano's recent submarine growth involved subaerially erupted lava that reached great water depths (up to 3.1 km) via lava tubes. Anomalously high F and Cl in some submarine glasses and glass inclusions indicate contamination possibly by fumarolic deposits in ephemeral rift zone magma chambers. The relatively high CO2 but variable H2O/K2O and S/K2O in some submarine rift zone glasses indicates pre-eruptive mixing between degassed and undegassed magma within Mauna Loa's rift system. Volatile compositions for Mauna Loa magmas are similar to other active Hawaiian volcanoes in S and F, but are less Cl-rich than Ll'ihi glasses. However, Cl/K2O ratios are similar. Mauna Loa and Ll'ihi magmas have comparable, but lower H2O than those from Kilauea. Thus, Kilauea's source may be more H2O-rich. The dissimilar volatile distribution in glasses from active Hawaiian volcanoes is inconsistent with predictions for a simple, concentrically zoned plume model.  相似文献   

11.
Olivine tholeiites (8–10 wt. % MgO) from Krafla show significantcorrelations between major elements (notably Fe) and incompatibletrace elements. In particular, the samples with the highestFe contents are the most enriched in elements such as K, Ti,and light rare earth elements (LREEs). The observed trends cannotbe explained by fractional crystallization of olivine, plagioclase,or clinopyrox-ene from a single primary magma, nor are theylikely to result from crustal contamination. The simplest explanationfor the compositional variations is that they result from imperfectmixing of primary melts, produced at different levels in theupwelling asthenosphere, which later underwent olivine fractionation.Nd and Sr isotopic data hint at the possibility that some mixingbetween two (plume and non-plume) mantle sources may also berequired. The average olivine tholeiite composition is comparedwith the average compositions of melts, predicted from parameterizationsof melting experiments, produced from mantle with differentpotential temperatures. The predicted compositions were correctedfor fractional crystallization before the comparison was made.The data compare well with the predicted average compositionof melt from mantle with a potential temperature of {small tilde}1580C. Differences between the observed and predicted compositions(notably higher Fe and lower Na in the Krafla basalts) are ascribedeither to errors related to the modelling or to the effect oftemperature- and velocity-structure of the mantle plume beneathIceland. The average REE composition of the olivine tholeiiteswas then inverted to obtain the variation of melt fraction withdepth. The predicted melt fraction rises from 00 at a depthof {small tilde} 140 km (consistent with a potential temperatureclose to 1580 C) to a maximum value of {small tilde} 03 atthe surface. The predicted melt thickness ({small tilde}22 kmwhen corrected for fractional crystallization) is consistentwith geophysical estimates of crustal thickness.  相似文献   

12.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

13.
Metamorphic conditions in the staurolite, kyanite, and sillimanitezones of the Barrovian type area have been calculated usinga variety of equilibria. Temperatures ranged from 550?C (transitionzone) to 650?C (sillimanite zone) with P {small tilde} 6000bars and XH2O {small tilde} 0?6. Metamorphism was progressive,and the exact nature of the continuous reactions responsiblefor the formation of index minerals was strongly controlledby bulk rock Mg/(Mg + Fe). Thus, in magnesian rocks staurolitebroke down to kyanite + biotite, whereas in iron-rich rocksit broke down to garnet + muscovite and kyanite was not produced.Sillimanite formed both from kyanite and by dehydration reactionsof staurolite and white mica.  相似文献   

14.
Spinel peridotite xenoliths associated with the Rio Grande Rift axis (Potrillo and Elephant Butte volcanic fields) and the western rift shoulder (Adams Diggings) have been investigated to correlate pre-eruptive pressure and temperature conditions with xenolith deformation textures and rift location. Temperatures of xenolith equilibration at the rift shoulder are 100–250°C cooler for a given pressure than the temperatures at the rift axis. Undeformed xenoliths (protogranular texture) are derived from higher temperature and higher pressure conditions than deformed xenoliths (porphyroclastic and equigranular textures) in the rift axis. Exsolution lamellae in pyroxenes, small decreases in Al contents of orthopyroxenes from core to rim, and small differences in porphyroclastic orthopyroxene compositions versus neoblastic orthopyroxene compositions indicate high temperatures followed by cooling and a larger cooling interval in deformed rocks than in undeformed rocks. These features, along with thermal histories based on calcium zoning in olivine rims, indicate that the upper mantle under Adams Diggings and Elephant Butte has undergone cooling from an initial high temperature state followed by a late heating event, and the upper mantle under Potrillo has undergone cooling, reheating, and late heating events.  相似文献   

15.
Upper mantle xenoliths from the southern Rio Grande rift axis (Potrillo and Elephant Butte) and flank (Adam’s Diggings) have been investigated to determine chemical depletion and enrichment processes. The variation of modal, whole rock, and mineral compositions reflect melt extraction. Fractional melting is the likely process. Fractional melting calculations show that most spinel peridotites from rift axis locations have undergone <5% melting versus 7–14% melting for xenoliths from the rift shoulder, although the total range of fractional melting overlaps at all three locations. In the rift axis, deformed (equigranular and porphyroclastic texture) spinel peridotites are generally characterized by significantly less fractional melting (2–5%) than undeformed (protogranular) xenoliths (up to 16%). This difference may reflect undeformed xenoliths being derived from greater depths and higher temperatures than deformed rocks. Spinel peridotites from the axis and shoulder of the Rio Grande rift have undergone mantle metasomatism subsequent to melt extraction. Under the rift shoulder spinel peridotites have undergone both cryptic and patent (modal) metasomatism, possibly during separate events, whereas the upper mantle under the rift axis has undergone only cryptic metasomatism by alkali basaltic magma.  相似文献   

16.
Quaternary mafic lavas from Lake Turkana (northern Kenya) provideinformation on processes operating beneath the East AfricanRift in an area of anomalous lithospheric and crustal thinning.Inferred depths of melting beneath Turkana (15–20 km)are shallower than those recorded elsewhere along the rift,consistent with the anomalously thin crustal section. The maficlavas have elevated incompatible trace element contents whencompared with mid-ocean ridge basalts, requiring an enrichmentevent in the source region. Basalts with low Sr isotopic ratios(  相似文献   

17.
Geochemical data are reported for samples from the flanks and floor of the southern Kenya Rift Valley in the Lake Magadi area, and from two central volcanoes located within the rift valley. Rift lavas include samples of Singaraini and Ol Tepesi basalts on the eastern flank, Kirikiti basalts from the western flank, and plateau trachytes from the rift valley floor. Central volcano samples are from Ol Esayeiti and Lenderut located on the eastern flank. The rift basalts are mildly ne-normative, moderately evolved (Mg#=0.39-0.62) alkali basalts and show an overall range in differentiation. Incompatible trace element abundances are moderately elevated (Nb=17-51; Zr=93-274; La=17-55 ppm) and show strongly coherent variations and constant inter-element ratios (e.g. Zr/Nb=4.2-5.5; Nb/Ta=17.5ǂ.4; (La/Sm)n=7.3ǃ.1); isotope ratios are restricted in range (87Sr/86Sr=0.70393-0.70436; 143Nd/144Nd=0.51272-0.51280; 206Pb/204Pb=19.87-19.92; 207Pb/204Pb=15.68-15.70; 208Pb/204Pb=39.56-39.71). Central volcano lavas are more alkaline in character and include basanite (Ol Esayeiti; Mg# >60) and hawaiite to benmoreite (Lenderut; Mg#=0.48-0.38). Incompatible element ratio are similar to those of the rift basalts, although the chondrite normalised REE patterns are steeper (La/Sm)n=17.4ǃ.2). 87Sr/86Sr (0.70358, 0.70391), 143Nd/144Nd (0.51280, 0.51267), 206Pb/204Pb (19.96,20.17), 207Pb/204Pb (15.66,15.76) and 208Pb/204Pb (39.80,40.00) ratios of Ol Esayeiti basanites are similar to the rift basalts, whereas the Lenderut lavas have unusually low143Nd/144Nd (0.512388-0.512453) ratios for their 87Sr/86Sr (0.70370-0.70481) ratios, and distinctly less radiogenic and variable Pb isotope compositions (206Pb/204Pb=17.93-19.01; 207Pb/204Pb=15.43-15.58; 208Pb/204Pb=37.91-39.14). An integrated model is developed in which the geochemical signature of the lavas is attributed to variable degrees of melting to depths within the garnet stability field, and in the presence of residual amphibole. The stability fields of these phases in P-T space indicates that the lavas must have formed within the sub-continental lithosphere rather than within the underlying ambient asthenosphere or a rising mantle plume. The subcontinental lithospheric mantle must therefore extend to a depth of at least 75 km beneath the Lake Magadi area, which contrasts with recent gravity models for the area, which infer that lithospheric mantle is absent beneath this section of the southern Kenya Rift.  相似文献   

18.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

19.
We report major and trace element X-ray fluorescence (XRF) datafor mafic volcanics covering the 15-Ma evolution of Gran Canaria,Canary Islands. The Miocene (12–15 Ma) and Pliocene-Quaternary(0–6 Ma) mafic volcanics on Gran Canaria include picrites,tholeiites, alkali basalts, basanites, nephelinites, and melilitenephelinites. Olivineclinopyroxene are the major fractionatingor accumulating phases in the basalts. Plagioclase, Fe–Tioxide, and apatite fractionation or accumulation may play aminor role in the derivation of the most evolved mafic volcanics.The crystallization of clinopyroxene after olivine and the absenceof phenocrystic plagioclase in the Miocene tholeiites and inthe Pliocene and Quaternary alkali basalts and basanites withMgO>6 suggests that fractionation occurred at moderate pressure,probably within the upper mantle. The presence of plagioclasephenocrysts and chemical evidence for plagioclase fractionationin the Miocene basalts with MgO<6 and in the Pliocene tholeiitesis consistent with cooling and fractionation at shallow depth,probably during storage in lower-crustal reservoirs. Magma generationat pressures in excess of 3•0–3•5 GPa is suggestedby (a) the inferred presence of residual garnet and phlogopiteand (b) comparison of FeO1 cation mole percentages and the CIPWnormative compositions of the mafic volcanics with results fromhigh-pressure melting experiments. The Gran Canaria mafic magmaswere probably formed by decompression melting in an upwellingcolumn of asthenospheric material, which encountered a mechanicalboundary layer at {small tilde}100-km depth.  相似文献   

20.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号