首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
降水对重庆市大气污染物浓度的影响分析   总被引:1,自引:0,他引:1  
利用2013—2015年逐日沙坪坝气象站气象及临近的环境监测数据,探讨降水对重庆市大气污染物浓度的影响,结果表明:PM_(2.5)、PM_(10)、SO_2浓度随降水量增加逐渐降低,降低趋势线较为明显,降低幅度为SO_2的 PM_(10)的PM_(2.5)的;NO_2和CO随降水量增加减少趋势不明显;O_3浓度随降水量的增加而逐渐增加。各类大气污染物在不同量级降水量时变化特征有所不同。在降水量小于1 mm时,弱降水的气象条件更有利于污染物的积累,不利于污染的稀释扩散和沉降,空气质量恶化;大于1 mm后,降水对各种大气污染物均有明显的清除作用,清除能力随着降水量级的增加而增大,在降水量大于10mm后湿清除能力明显提升,降水量大于20 mm时湿清除能力最强,粗细颗粒与雨滴碰并效应增加,降水对PM_(10)和PM_(2.5)的湿清除率分别达30%和25%。连续降水时,各季节降水对各类大气污染物的湿清除能力不尽相同:冬季降水对PM_(2.5)湿清除作用最为明显,对其余污染物清除作用从大到小依次为PM_(10)、SO_2、NO_2、CO,而O_3在冬季降水使O_3浓度增加非常明显,通常冬季臭氧浓度相对较低,降水一定程度上使冬季空气质量变好,太阳辐射增加,二次污染物光合作用增强,臭氧浓度也一定程度上增加。  相似文献   

2.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

3.
利用2014年1月1日—2016年12月31日荆州城区逐日空气质量数据和同期地面气象要素逐日观测资料,分析了荆州城区空气质量状况、变化特征及其与气象要素的相关性。结果表明,荆州城区优良日数偏少,但2014—2016年荆州城区空气质量略有改善,首要污染物为PM_(2.5);AQI和PM_(10)、PM_(2.5)、SO_2、NO_2、CO的月变化规律一致,呈V型分布,冬季空气污染最严重,夏季空气污染相对较轻,O_3的变化规律则相反,呈反V型分布;除O_3外,AQI和其他污染物浓度与前一日AQI、气压呈正相关关系,与气温、水汽压、湿度、云量、降水、风速呈负相关关系,据此建立了AQI和各污染物浓度的回归预报方程;进一步分析了2014年1月严重污染天气的成因,本地污染物的分布、外地污染物的输入和气象扩散条件是影响空气质量的主要因素。  相似文献   

4.
利用2015-2018年郑州市气态污染物(SO_2、CO、NO_2和O_3)的浓度数据和郑州市气象数据资料,分析了郑州市气态污染物浓度的变化趋势和影响因素。结果显示:2015-2018年郑州市SO_2、CO、NO_2的年均浓度逐年降低,但其污染物浓度在31个省会城市中排名相对靠后,污染较为严重。SO_2、CO和NO_2浓度均为冬季的最高,其次是春季和秋季的,夏季的最低,O_3浓度与之相反。气态污染物浓度与气象因素的相关性分析结果表明:SO_2、NO_2、CO浓度均与温度呈显著负相关,O_3浓度与温度呈显著正相关;各污染物与气压的相关性与温度相反;SO_2、NO_2、CO浓度与降水量均呈负相关,降水对O_3的具体影响还有待深入研究。  相似文献   

5.
基于2014—2019年河北沧州逐小时气象与环境监测数据,采用风力+背景浓度订正方法,进一步探讨降水对大气污染物浓度的影响。结果表明:风力+背景浓度订正方法可以较好地消除污染物浓度自身的日变化特征,并剔除了风的影响,从而更准确地获取降水对大气污染物浓度的影响。在风力+背景浓度订正条件下,降雨对PM_(2.5)、PM_(10)、NO_2、O_3有较好的清除作用,而对SO_2、CO的清除作用不明显。不同强度降雨对PM_(2.5)、PM_(10)、NO_2均具有较好的清除作用,且清除率随着雨强的增强而增大;雨强小于8.0 mm·h~(-1)的降雨对O_3有显著清除作用,而大于6.0 mm·h~(-1)的降雨对SO_2有清除作用。伴随着降雨的持续,PM_(2.5)、PM_(10)、NO_2、O_3质量浓度不断下降,降雨清除效率也随之降低,当污染物质量浓度降至一定阈值后降雨清除作用不明显。  相似文献   

6.
利用2014—2016年的中国气象局地面观测资料和中国环境保护部公布的6种大气污染物浓度数据,对降雨天气前后的大气污染物浓度变化进行分析。结果表明:在京津冀、长三角和珠三角区域,降雨天气后6种大气污染物浓度降低的时次约占43%—60%,其中PM_(10)浓度降低最为明显,PM_(2.5)、O_3、SO_2和NO_2次之,最不明显的是CO。一般而言,降水天气前大气污染物浓度越高,降雨后浓度降低的时次所占比例越大,浓度降低值也越大,但当降雨天气前大气污染物浓度较低时,降雨天气后浓度升高的个例也很多,约占21%—61%。京津冀地区由于平均大气污染物浓度较高,降水天气对大气污染浓度的降低效果比长三角和珠三角地区更明显。对于大多数降雨时次,小时降水量越大,大气污染物浓度降低的时次所占比例越大,但浓度降低值反而越小。例外的是,小时雨强大于10 mm的降雨后,京津冀地区的O_3和SO_2浓度以及长三角地区的PM_(10)、PM_(2.5)和SO_2浓度降低程度不如小时雨强小于10 mm时;而珠三角地区的NO_2和O_3在降雨后的浓度变化对小时雨强不敏感。在京津冀地区,降雨天气对较大浓度的O_3清除作用非常明显。在长三角和珠三角地区,降雨前CO浓度较低时,降雨后浓度升高时次比浓度减小的多;另外,降雨天气对SO_2的清除作用非常明显。  相似文献   

7.
基于2013年武汉市环境监测数据和气象要素资料,分析该市空气质量状况与气象条件的关系。结果表明,武汉市全年平均空气质量指数(AQI)为135,良和轻度污染所占比例分别为35%和30%。雾天、霾天、晴天、雨天四种天气条件下,6种污染物(SO_2、NO_2、CO、O_3、PM_(2.5)和PM_(10))浓度值基本上为雾天最高、霾天次之、晴天再次之、雨天最低,雾天00—08时污染物浓度明显高于其他天气条件;PM_(2.5)浓度与降水量的相关性较差,中雨量级时,降水对污染物的清除作用显著,PM_(2.5)浓度下降明显,当日降水量小于1 mm时,PM_(2.5)浓度略有上升,平均上升1.3μg·m~(-3)左右,这与微量降水的大气增湿作用有关;PM_(2.5)浓度变化与相对湿度(RH)和风速的关系较明显,其相关系数分别为0.87和-0.72,当RH70%且每增加10%时,PM_(2.5)浓度增加10μg·m~(-3)左右;静风和风速很大时,污染物浓度相对较高,东南风影响下PM_(2.5)浓度在四季均较高,而秋、冬季在西北风影响下PM_(2.5)浓度最高;PM_(2.5)浓度主要增长阶段以正变温、负变压为主。  相似文献   

8.
利用2013—2014年上海地区6种空气污染物小时浓度和逐日空气质量分指数(IAQI)的监测资料,统计分析了上海地区空气污染的变化特征及其气象影响因子。结果表明:2014年上海地区空气质量优良率达77.0%,空气质量总体较2013年明显好转。2013—2014年上海地区AQI具有季节性特征,表现为冬季空气质量较差、秋季空气质量较好的特征,其中12月空气质量最差。由首要污染物分布可知,上海地区最主要的污染物为PM_(2.5),其中冬季PM_(2.5)污染出现最多;O_3则为夏季的主要污染物。由污染物浓度的周循环变化可知,上海地区PM_(2.5)、PM_(10)、NO_2和O_3浓度均存在周末低于工作日的"周末效应",但PM_(10)和NO_2浓度的"周末效应"更显著。由2014年上海地区霾日与PM_(2.5)浓度的变化可知,当PM_(2.5)浓度达到轻度及以上污染时,霾天气出现的概率大幅提高,但二者并非对应的关系。天气形势对PM_(2.5)污染影响较大,基于上海地区天气形势特点可以将PM_(2.5)污染的地面形势分为7种类型,其中高压中心型和高压楔型为PM_(2.5)污染的主要天气型。由于上海地区冬季冷空气活动频繁,西北风将上游地区颗粒物输送至本地,易造成较严重的污染天气;同时在冷高压的控制下,高压中心型和高压楔型天气频繁出现,导致颗粒物不易扩散,也易造成空气污染。夏季和秋季在副热带高压的控制下,水平和垂直扩散条件均较好,不易出现PM_(2.5)污染,但由于气温较高,光照条件较好,易出现O_3污染。  相似文献   

9.
基于西安城区与郊区两个环境路边站和区域气象站2016-2018年观测的逐小时气象、环保和交通监测数据,对西安尾气污染物、机动车流量和气象要素条件进行统计分析。结果表明:1)2016年以来,西安市冬季空气质量指数和主要污染物浓度整体呈逐年下降趋势,治污减霾成效明显。主要尾气污染物浓度月际变化趋势相同,冬季11月到次年1月的浓度均明显高于其他月份的,夏季6月到8月的浓度较低,冬季的约为夏季的2~4倍。西安冬季汽车尾气污染物中,氮氧化物(NO_x)、碳氧化物(CO)、碳氢化物(HC)日变化特征相似,但细颗粒物(PM_(2.5))空间差异大。2)NO_x和CO与汽车尾气排放关系密切,每日上午时段二者浓度随车流量增大而增大,车流量整体偏大40%的城区比郊区污染物偏多20%~30%。尾气污染物浓度分布与风频、风速等密切相关:西安城市道路风速较低,风向与汽车尾气污染物的扩散方向基本一致,较高污染浓度通常都出现在主导风向的下风向。城市建筑和道路规划建设中,要保留足够的"城市通风廊道"。3)西安尾气污染物浓度不存在明显的"周末效应",城区站NO_x浓度无明显起伏变化,郊区站道路环境中的NO_x浓度受柴油车通行量影响较大,说明重型车可能对污染的影响更大。4)降水对污染物稀释沉降效果明显,对NO_x作用不明显。前期超过60%以上的相对湿度是降水开始前出现颗粒物小时最大增幅超过200μg/m~3的有利条件,高湿环境是重污染天气过程颗粒物暴发式增长的有利气象条件,因此静风或小风大气环境下,通过水雾"高射炮式"播撒方式增加低层湿度并非是沉降稀释颗粒物的有效方法。  相似文献   

10.
江苏淮安地区大气污染变化特征及其与气象条件的关系   总被引:1,自引:0,他引:1  
采用江苏省淮安市地面5个监测站2013年1月1日—2015年12月31日PM_(10)、PM_(2.5)、SO_2、NO_2、CO、O_3逐日质量浓度资料及同期气象资料,统计分析了该地区空气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD(Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM_(10)、PM_(2.5)占比分别达到25.2%、48.9%,PM_(10)中PM_(2.5)比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

11.
本文利用2013年1月1日~2015年6月30日贵阳市9个环境监测站的6种主要大气污染物(SO2、NO2、O3、PM10、CO、PM2.5)监测数据,分析了贵阳市主要大气污染物的年变化、日变化特征及降水对首要污染物浓度变化的影响。发现SO2、NO2、PM10、CO、PM2.5浓度为单谷型年变化,夏季浓度最低,冬季浓度最高;O3浓度为双峰型年变化,4、10月分别有两个极大值、11~2月与7月分别为两个极小值;SO2、NO2、PM10、CO、PM2.5浓度日变化呈双峰型特征;O3浓度日变化为单峰型特征;郊区SO2、NO2、PM10、CO、PM2.5日平均浓度低于市区,而郊区O3日平均浓度高于市区。降水对O3的湿清除效果不好,对其余大气污染物的湿清除效果较好,尤其夜间降水对颗粒污染物(PM2.5、PM10)的清除效果优于白天降水,但会使O3浓度明显上升。  相似文献   

12.
北京上甸子本底站2003年秋冬季痕量气体浓度变化特征   总被引:3,自引:0,他引:3  
2003年9月至2004年2月在北京上甸子区域大气污染本底监测站(117°07′E,40°39′N,海拔293.9 m)开展了对大气中痕量气体的连续在线监测,获得了NO、NO2、SO2、CO和O3等气体组分的变化特征、变化规律和浓度水平。初步分析表明,NO、NO2、SO2、CO和O3有明显的日变化和月变化特征。O3浓度在秋季较高,冬季较低;NO、NO2和SO2冬季出现浓度高值。探讨了O3和痕量气体与气象因子的关系。O3与NO、NO2、NOx、CO和SO2皆为负相关,CO与NOx和SO2具有较好的相关性。本底站痕量气体浓度与同期观测的城区污染物浓度相比其变化趋势基本呈同位相。  相似文献   

13.
选取贵阳市环保站2013年3月—2014年2月共12个月的主要污染物(PM_(10)、PM_(2.5)和O_3)浓度的小时均值进行分析,发现PM_(10)和PM_(2.5)在20时—次日08时较容易出现日最大值,O_3在12—18时较容易出现日最大值,PM_(10)和PM_(2.5)污染物浓度的月平均,以夏季最低,冬春两季最高,这可能与贵阳市冬春两季的采暖有一定的关系。而O_3浓度的月平均值以冬夏两季较低,春秋两季较高,但整体变化幅度不大。分析以上3种污染物和气象要素的相关性发现,湿度对污染物浓度较大,呈负相关。运用逐步回归方法分别建立PM_(10)、PM_(2.5)和O_3的预报方程,其中PM_(10)的预报方程预报等级的准确率为67.81%,订正后准确率为70.55%;PM_(2.5)的预报方程准确率为65.75%,订正后准确率为71.23%,故业务对PM_(10)和PM_(2.5)的预报中可以参考订正值。O_3的预报方程准确率为70.55%,订正后准确率为68.49%,业务中预报O_3可以直接参考预报值。  相似文献   

14.
基于南昌市大气环境监测、地面气象观料和GDAS等资料,主要采用后向轨迹聚类分析、潜在源贡献因子和浓度权重轨迹分析方法,分析了2020年南昌市大气污染特征和污染物潜在源区。结果表明:1)南昌市春、夏、秋季以O_(3)污染为主,冬季以PM_(2.5)污染为主。2)大气污染物质量浓度日变化具有明显的季节性特征,PM_(2.5)和PM_(10)在春、秋、冬季呈双峰形分布,NO_(2)在秋、冬季呈弱双峰形分布,春、夏季呈单峰分布,O_(3)呈单峰形分布。南昌市东部大气污染较西部更严重。3)南昌市气流输送季节差异明显,春、秋、冬季主要受偏北气流影响,夏季主要受偏南气流影响。本地源是南昌市大气污染的主要潜在源,安徽省南部、湖北省东部、上饶市西部和九江市的区域输送也有一定贡献。  相似文献   

15.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。  相似文献   

16.
大气质量的周循环特征反映了人类周期性的活动规律对大气环境的影响。基于安徽省16个城市PM_(2.5)、PM_(10)、CO、NO_2、SO_2和O_3这6种污染物的监测结果,对安徽省大气污染的周循环特征进行了评估。首先基于原始逐小时污染物浓度时间序列在日和周窗口时间宽度上的滑动平均序列,定义了周循环距平百分率序列的计算方法,排除了日循环和长期低频变化的影响。以此为基础,基于合成分析以及贝叶斯统计分析,发现这6种大气污染物中,PM_(2.5)、PM_(10)、CO和NO_2有着较为明显的周循环变化特征,其周循环距平百分率有着较大的变幅;而O_3的周循环特征相对不明显。主成分分析获得的周循环,第1模态发现除O_3以外的其他5种污染物的周循环有着同样的演进模式,即从周三开始持续到周五的累积和周六之后的衰减;O_3的周循环峰值与谷值与其他污染物存在着大于12 h的滞后,反映了在周循环尺度上O_3距平变化对其光化学反应前体距平变化的滞后响应特征。  相似文献   

17.
随着大气污染防治计划的实施,我国SO_2排放量从2013年的25.4 Tg下降至2018年的10.5 Tg。SO_2排放的大幅变化是否会影响PM_(2.5)对NO_x和NH_3排放的敏感性尚不清楚。为此,本研究采用GEOSChem全球大气化学传输模式,评估了中国东部不同SO_2排放水平下PM_(2.5)对NO_x和NH_3敏感性的变化。结果表明:2013年, PM_(2.5)对NH_3的敏感性(0.31)比NO_x(0.21)更强。2013~2018年,由于SO_2排放大幅下降, PM_(2.5)对NO_x的敏感性上升至0.33,而对NH_3的敏感性则下降到0.22。因此,在较低的SO_2排放情景下,考虑到PM_(2.5)对NH_3的敏感性降低,进一步消减NO_x排放可能对降低PM_(2.5)浓度有更好的效果。  相似文献   

18.
利用2016—2018年重庆市荣昌区冬季PM_(2.5)质量浓度监测数据,结合地面气象观测资料、L波段探空雷达资料、ERA-Interim再分析资料及全球资料同化系统(GDAS)数据,并与HYSPILT模型相结合,分析荣昌区冬季PM_(2.5)污染的气象影响因素及区域传输特征。结果表明:(1)2016—2018年荣昌区冬季PM_(2.5)污染超标频率高达56.3%,但空气质量有好转趋势。PM_(2.5)质量浓度日变化有2个峰值,分别出现在12:00和23:00;(2)荣昌区冬季PM_(2.5)污染主要受降水、逆温层、低层风速等气象条件影响。当925 hPa以下和700~600 hPa存在明显逆温层结,500 hPa呈西北气流或平直西风气流,850 hPa以下为偏东北弱风时不利于PM_(2.5)扩散,易发生重度污染天气。日降水量R>2.0 mm时,降水对PM_(2.5)具有明显的正清除,且清除能力随着降水等级的增大而增大,R<1.0 mm时,降水对PM_(2.5)表现为负清除,微量降水期间不利的扩散条件加之颗粒物吸湿增长作用反而导致PM_(2.5)质量浓度增加,空气质量恶化;(3)荣昌区冬季PM_(2.5)污染主要受距离荣昌区西北和东北方向约300 km范围内的成渝城市群城市间污染物区域输送影响,外域颗粒污染物的传输是荣昌区冬季PM_(2.5)污染的重要原因。  相似文献   

19.
利用2015—2017年格尔木市L波段雷达探空站的探空资料,分析格尔木市低空逆温的基本特征,并与不同气候区的西宁市、玉树市做对比;结合2016—2017年格尔木市逐日空气污染物浓度(SO_2、NO_2、O_3、PM_(2.5))资料,研究低空逆温对空气污染物浓度的影响。结果表明:07时、19时格尔木市年均逆温发生频率分别为67%、24%,以贴地逆温为主,秋、冬季发生频率高于春、夏季;逆温厚度表现为早间高于晚间,冬季最厚,夏季最薄,07时各季节贴地逆温厚度高于悬浮逆温,19时秋、冬季悬浮逆温厚度高于贴地逆温;逆温强度表现为贴地逆温大于悬浮逆温;07时悬浮逆温的起始高度和终止高度(分别为331 m、571 m)小于19时(分别为662 m、851 m),均在冬季达到最大;07时柴达木盆地逆温发生频率最高(67%)、强度最大(2.07℃/100 m)、厚度最薄(267m),19时逆温发生频率少于河湟地区,但多于三江源地区(24%),强度最小(2.18℃/100 m),厚度最厚(127 m);逆温对SO_2、NO_2、O_3、PM_(2.5)浓度有显著影响,但对PM_(2.5)的影响效果不如风速明显。  相似文献   

20.
利用惠州市区2013—2016年逐时的风向风速和大气污染物浓度资料,分析了风向风速与污染物质量浓度的关系、地理位置和盛行风向对惠州市空气质量的影响。结果表明:①惠州市污染物质量浓度与风向风速密切相关。当风向为ESE、SE、SSE、S、SSW时,SO_2、CO、NO、NO_2、NO_x、PM10和PM2.5的全年平均质量浓度最低;当风向为SW、WSW、W、WNW、NW时,全年平均质量浓度最高。O_3在风向为WSW、W、WNW、NW时,全年平均质量浓度明显高于其他风向,均在72μg/m^3以上。在冬半年,当风向为偏西北风时,SO_2、CO、NO、NO_2、NO_x、O_3、PM10和PM2.5质量浓度与年平均相比增加了5%~33%;当风向为偏南风时,SO_2、CO、NO、NO_2、NO_x、PM10和PM2.5质量浓度与年平均相比减少了3%~17%。②地理位置、盛行风向和周边城市分布与惠州市空气质量密切相关。位于惠州市国控点东侧的河源市和汕尾市或南海海域环境空气综合质量指数低,空气质量优良率高,惠州市东北风和东南风全年出现频率分别为40.3%和27.3%;而位于惠州市国控点偏西侧的广州市和东莞市环境空气综合质量指数较高,空气质量优良率较低,惠州市偏西风全年出现频率(有W的合计)仅17.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号