首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This paper considers the hydrogeological simulation of groundwater movement in karstic regions using a hydrological modelling system (SHETRAN) which has been adapted for modelling flow in karstic aquifers. Flow and transport through karstic aquifers remains poorly understood, yet quantitative hydrogeological models are essential for developing and implementing groundwater protection policies. The new model has been developed and used within the STALAGMITE (Sustainable Management of Groundwater in Karstic Environments) project, funded by the European Commission. The SHETRAN model is physically based insofar as most of the parameters have some physical meaning. The SHETRAN model represents all of the key processes in the hydrological cycle, including subsurface flow in the saturated and unsaturated zones, surface flow over the ground surface and in channels, rainfall interception by vegetation canopies, evapotranspiration, snow-pack development and snowmelt. The modifications made to SHETRAN to simulate karstic aquifers are (1) the coupling of a pipe network model to a variably saturated, three-dimensional groundwater component (the VSS-NET component), to simulate flow under pressure in saturated conduits; (2) the coupling of surface water features (e.g. sinking streams or "ponors", and spring discharges) to the conduit system; (3) the addition of a preferential "bypass" flow mechanism to represent vertical infiltration through a high-conductivity epikarst zone. Lastly, a forward particle tracking routine has been developed to trace the path of hypothetical particles with matrix and pipe flow to springs or other discharge points. This component allows the definition of groundwater protection zones around a source for areas of the catchment (watershed) which are vulnerable to pollution from non-point sources (agriculture and forestry).  相似文献   

2.
The study of contaminants propagation in fractured and karstic aquifers shows uncertainties caused by the conditions of anisotropy of the medium and by the presence of cavities and residual products that could make fluid flow and solute transport unforeseeable. Therefore, in aquifers characterized by fissured and fractured solid matrix, in order to set up remediation strategies, it is necessary to represent the conditions of groundwater flow and contaminant propagation in such a way as to take into consideration the high heterogeneity connected to the presence of fractures and channels that act as preferential flow ways. The study carried out in a specified site, located in the city of Bari, heavily contaminated by petroliferous substances allows to build a model able to simulate subterranean draining conditions that prove to be as near as possible to the real ones. This simulation could be helpful for the prevision of the dynamic behavior of the aquifer during the period of the treatment in order to allow optimizations on the technical and economical point of view and in order to check the effective functionality of the system in the presence of anthropic constraints.  相似文献   

3.
4.
KARSTIC: a sensitivity method for carbonate aquifers in karst terrain   总被引:5,自引:2,他引:5  
. Groundwater in karstic aquifers can be dangerously sensitive to contamination. Many cities in the western USA rely on karstic carbonate aquifers for municipal water supplies. For example, Rapid City, South Dakota, pumps more than half of its drinking water from wells in the Madison Limestone. This work examined the sensitivity of karstic aquifers to surface contamination in mountainous terrain. Where karstic carbonate aquifers are exposed at their outcrop areas, they are particularly susceptible to the introduction of contamination through diffuse recharge or through point recharge at swallow holes along streams. Residential developments in mountainous regions of the western USA are encroaching on the recharge areas of karstic aquifers. Many of these residential developments are served by onsite wastewater disposal systems such as septic tanks and drain fields, with the attendant danger of introduction of pathogens from malfunctioning treatment systems above fractured limestone which offers little filtering. Where streams disappear into karstic aquifers at swallow holes, microbial contaminants such as Giardia or Cryptosporidium are a concern, as well as potential spills, leaks, or accidents along roads near these streams. The KARSTIC method developed and modified in this work puts greater emphasis on karst features than previous sensitivity procedures such as the US Environmental Protection Agency's DRASTIC method. The modified method gives increased attention to highly sensitive areas of karstic carbonate aquifers by weighting the synergistic effects of fracturing, karst development, and swallow holes of recharging streams. In a field application, hydrogeologic maps of a watershed in the Black Hills, USA, were digitized into a geographic information system. The resulting sensitivity map and report can be used by planners, managers, and the public as a screening tool for assessing groundwater sensitivity in regions which include karstic aquifers.  相似文献   

5.
The Corallian limestone of northern England (UK) is widely exploited for water supplies and exhibits the karstic phenomena of sinking rivers, conduit development and groundwater velocities of several kilometres per day. To test a number of model-derived source protection zones and elucidate contaminant transport mechanisms in the aquifer, three tracer tests were conducted from a set of swallow-holes draining the River Derwent toward public water supply wells in the eastern part of the aquifer. Tracers used included: Enterobacter cloacae (bacteriophage), Photine C (optical brightener), sodium fluorescein (fluorescent dye) and sulphur hexafluoride (dissolved gas), the varying properties of which make them suitable analogues for different types of potential contaminant. Observed tracer transport times and arrival patterns indicate that tracer transport occurs through karstic channels embedded in a network of primary fissures which exert control over tracer concentrations once initial tracer plumes have passed. A dipole flow system is observed between the swallow-holes and the closest abstraction well, whilst previously modelled source protection zones do not accurately reflect either groundwater velocity or those areas of the aquifer supplying the wells. These findings imply that managing such aquifers for potential contamination should rely upon empirical tracer evidence for source-protection zone modelling.  相似文献   

6.
Numerical and analytical modelling studies were conducted for the analysis of groundwater flow and contaminant transport at the Innisfil landfill site in the Town of Innisfil, County of Simcoe, in Ontario, Canada. Previously conducted field studies categorized the upper stratigraphy at the site into three units: upper sand unit, upper silt/clay unit and Intermediate Sand unit. Essentially horizontal groundwater movement in the two sand units and vertical downward flow in the silt/clay unit were reported by the field hydrogeologists. In the following, application of three computer models (FLOWPATH, USGS MOC and POLLUTE) for the simulation of the groundwater flow and contaminant transport processes at the Innisfil landfill site is described. The paper focuses on the calibration of groundwater flow and contaminant transport systems, and demonstrates how the insight gained during the contaminant transport calibration was used to improve the initial groundwater flow characterization of the hydrogeological system.  相似文献   

7.
PHREEQC在地下水溶质反应-运移模拟中的应用   总被引:7,自引:2,他引:7  
由于地下水污染的加剧,对地下水中污染物运移规律的研究日益受到重视。地下水中的溶质在运移过程中伴随着溶质组分间的化学反应,因此需要建立地下水溶质运移与化学反应的耦合模型。PHREEQC是近年来发展起来的描述局部平衡反应、动态生物化学反应的水文地球化学模拟软件。本文利用该模拟软件对一维地下水流动过程中溶质离子交换反应和动态氧化还原反应进行了模拟。结果表明,PHREEQC能够成功地进行溶质运移情况下复杂水化学反应模拟,但对于复杂地下水流和溶质运动的情况,有必要耦合其它的地下水流动和溶质运移软件来共同完成。  相似文献   

8.
An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 , Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2–; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.  相似文献   

9.
 The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Received, October 1996 Revised, August 1997 Accepted, September 1997  相似文献   

10.
Analyzing groundwater hydrologic equations related to karstic aquifers and spring hydrograph simulation have become the focus of many researches. Having double or triple porosity structure, mixed flow nature, and varying conduit permeability have made these formations become complex heterogenic systems with great temporal and spatial hydrodynamic variability. In this paper, a conditional sequential gaussian simulation (SGS) is used to simulate monthly flow data of five karstic springs with different hydrogeological properties, located in Zagros Mountain Chain, in western Iran. To evaluate the performance of the SGS algorithm, the results are compared with those of an autoregressive integrated moving average (ARIMA) model. The results demonstrate the efficiency of the SGS model in simulation of monthly flows compared to the ARIMA model. They also show the suitability of this model for handling uncertainty associated with karstic spring flows through generation of several equally probable stochastic realizations.  相似文献   

11.
The aim of this research is to determine the relationship between groundwater flow and water quality of different ground and surface water basins in the southwest Turkey. In addition, groundwater vulnerability is assessed taking into consideration groundwater flow and quality. The autochthonous Beydaglari limestone is the major karstic aquifer in the region. According to the groundwater level map of alluvium aquifers in the basins, groundwater discharge toward the carbonate aquifer is direct and indirect. The hydrogeological connection between ground and surface water basins occurs via the karstic aquifer located at the bottom of the alluvium bottom. In Egirdir lake, water also discharges in the karstic aquifer via karstic sinkholes at the western border of the lake. In the research area, general groundwater discharge is toward the Mediterranean Sea by means of autochthonous carbonate system, according to hydrogeological investigations, research of lineament and hydraulic conductivities. This result is supported by the locations of lineaments and shore springs discharging from the limestone. In addition, spreading of contaminants via karstic aquifer to great distance has been clearly identified.  相似文献   

12.
Greece is dependent on groundwater resources for its water supply. The main aquifers are within carbonate rocks (karstic aquifers) and coarse grained Neogene and Quaternary deposits (porous aquifers). The use of groundwater resources has become particularly intensive in coastal areas during the last decades with the intense urbanization, tourist development and irrigated land expansion. Sources of groundwater pollution are the seawater intrusion due to over-exploitation of coastal aquifers, the fertilizers from agricultural activities and the disposal of untreated wastewater in torrents or in old pumping wells. In the last decades the total abstractions from coastal aquifers exceed the natural recharge; so the aquifer systems are not used safely. Over-exploitation causes a negative water balance, triggering seawater intrusion. Seawater intrusion phenomena are recorded in coastal aquifer systems. Nitrate pollution is the second major source of groundwater degradation in many areas in Greece. The high levels of nitrate are probably the result of over-fertilization and the lack of sewage systems in some urban areas.  相似文献   

13.
Fluid flow and solute transport phenomena in fractured and karstic aquifers remain an open issue that calls the attention of numerous researchers belonging to different disciplinary fields as far as the aspects linked both to shallow and to deep phenomena are concerned. The hydrogeologic knowledge of these phenomena proves to be of high importance especially if considered in relationship with water resource exploitation, with the problems linked to contamination and the ones linked to urban and industrial development of the territory. In the examined area, characterized by a dismissed contaminated site, the realization of the landfill has required the development of a 3D flow model supported by a detailed local scale geologic model in order to evaluate the effects on groundwater flow and subsequently on contaminant propagation. The results of the flow model prove to be coherent with the fractured and karstic nature of the site in that they show at higher depths the presence of a subterranean stream channel that would speed up pollutant propagation. The obtained results represent the fundamental basis to implement a transport model that will permit to achieve a more in depth knowledge of the subsoil transport phenomena, and therefore to optimize any anthropic intervention that can involve the site.  相似文献   

14.
昆明市地热田越流含水系统中地下热水的数值模拟   总被引:7,自引:0,他引:7  
深层基岩地下(热)水水化学污染问题日趋严重,急需定量而仿真地模拟和预报天然状态和各种人为工程经济活动下地下(热)水流动及溶质(或污染物)的运移。在充分认识地质、水文地质条件的基础上,建立了考虑温压变化和越流条件的昆明市地热田深层基岩地下热水系统中水流和溶质运移的准三维非稳定流数学模型。模型用于开采条件下地热田地下热水水位及 F、Cl浓度的模拟,模拟结果具有较高的仿真性,拟合误差一般小于 2%~5%,表明模型合理、可靠。应用所建模型预测了开采条件下昆明市地热田II块段地下热水流场和溶质浓度动态的变化趋势,并提出了控制地下热水环境进一步恶化的措施。  相似文献   

15.
Dissolved organic carbon (DOC) is composed of a diverse array of compounds, predominantly humic substances, and is a near ubiquitous component of natural groundwater, notwithstanding climatic extremes such as arid and hyper-arid settings. Despite being a frequently measured parameter of groundwater quality, the complexity of DOC composition and reaction behaviour means that links between concentration and human health risk are difficult to quantify and few examples are reported in the literature. Measured concentrations from natural/unpolluted groundwater are typically below 4 mg C/l, whilst concentrations above these levels generally indicate anthropogenic influences and/or contamination issues and can potentially compromise water safety. Treatment processes are effective at reducing DOC concentrations, but refractory humic substance reaction with chlorine during the disinfection process produces suspected carcinogenic disinfectant by-products (DBPs). However, despite engineered artificial recharge systems being commonly used to remove DOC from recycled treated wastewaters, little research has been conducted on the presence of DBPs in potable groundwater systems. In recent years, the capacity to measure the influence of organic matter on colloidal contaminants and its influence on the mobility of pathogenic microorganisms has aided understanding of transport processes in aquifers. Additionally, advances in polymerase chain reaction techniques used for the detection, identification, and quantification of waterborne pathogens, provide a method to confidently investigate the behaviour of DOC and its effect on contaminant transfer in aquifers. This paper provides a summary of DOC occurrence in groundwater bodies and associated issues capable of indirectly affecting human health.  相似文献   

16.
This paper gathered available flow and transport solutions and used them for two composite liners, consisting of geomembrane (GM) overlying either a compacted clay liner (CCL) or a geosynthetic clay liner (GCL). Its aim is to provide a guiding framework for the possible choices of (a) approaches to bottom liner design, (b) respective analytical solutions to flow and transport equations, as well as (c) parameters required for each type of solution. On the basis of the obtained results, the following recommendations are made. When the goal of analysis is to determine material equivalency, leachate flow rate is an adequate key parameter for GM-CCL composite liners. For GM-GCL composite liners, it is necessary to compute contaminant concentration or mass flux, considering (a) transport through defects for inorganic contaminants and (b) diffusion and the contribution of any available attenuation layer for organic contaminants. When the goal of analysis is to assess impact to groundwater, it is advised to calculate both discharge rate and contaminant mass flux regardless of liner type. The critical parameter for the transport calculations is the retardation factor of the contaminant, for the case of CCLs, while the results for GCLs are much less sensitive to this parameter.  相似文献   

17.
It is necessary to understand the presence, movement, and persistence of contaminants in aquifers to develop adequate groundwater protection plans. Fractured bedrock aquifers with thin overburden cover are very sensitive to contamination, and little is known about transport processes from the ground surface to depth in this setting. This study was undertaken to investigate the potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs), which are flame retardants, in a natural fractured bedrock aquifer in Canada proven to be sensitive to contamination. PBDEs, which had not been previously measured in groundwater in detail, were detected in the study aquifer at concentrations greater than those observed in surface-water bodies. Potential sources include manure, septic tanks, and the atmosphere. From this scoping study, it is evident that additional surveys of PBDE concentrations in groundwater are warranted, especially in settings with high potential source concentrations coupled with sensitive aquifers.  相似文献   

18.
Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.  相似文献   

19.
Karst aquifers represent one of the main sources of water supply in Serbia. Wide distributions of karstic areas, abundant reserves, and excellent quality of karst groundwater have been the reasons for its extensive use in water supply systems throughout the country. In Serbia, 70 karstic sources have been tapped for centralized water supply, with the assessed minimal capacity exceeding 4.5 m3/s. Most of the large cities of Eastern and Western Serbia currently use karst groundwater for water supply; however, due to unstable flow regime when only natural springflow is tapped, numerous problems arise during the recession period (summer–autumn). During the last two decades, after favorable conditions had been confirmed through hydrogeological survey and feasibility studies, several newly constructed systems for artificial control of karst aquifers (mostly in Eastern Serbia) resulted in significantly improved water supply.  相似文献   

20.
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号