首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The study of biogeochemical and hydrological cycles in small experimental watersheds on silicate rocks, common for the Temperate Zone, has not yet been widely applied to the tropics, especially humid areas. This paper presents an updated database for a six-year period for the small experimental watershed of the Mengong brook in the humid tropics (Nsimi, South Cameroon). This watershed is developed on Precambrian granitoids (North Congo shield) and consists of two convexo-concave lateritic hills surrounding a large flat swamp covered by hydromorphic soils rich in upward organic matter. Mineralogical and geochemical investigations were carried out in the protolith, the saprolite, the hillside lateritic soils, and the swamp hydromorphic soils. Biomass chemical analyses were done for the representative species of the swamp vegetation. The groundwater was analysed from the parent rock/saprolite weathering front to the upper fringe in the hillside and swamp system. The chemistry of the wet atmospheric and throughfall deposits and the Mengong waters was monitored.In the Nsimi watershed the carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti, and Th in the uppermost first meter of the swamp regolith. When the organic colloid content is low (i.e., in the hillside groundwater), Th and Zr concentrations are extremely low (<3 pmol/L, ICP-MS detection limits). Strongly insoluble secondary thorianite (ThO2) and primary zircon (ZrSiO4) crystals control their mobilization, respectively. This finding thus justifies the potential use of both these elements as inert elements for isoelement mass balance calculations pertaining to the hillside regolith.Chloride can not be used as a conservative tracer of hydrological processes and chemical weathering in this watershed. Biogenic recycling significantly influences the low-Cl input fluxes. Sodium is a good tracer of chemical weathering in the watershed. The sodium solute flux corrected from cyclic salt input was used to assess the chemical weathering rate. Even though low (2.8 mm/kyr), the chemical weathering rate predominates over the mechanical weathering rate (1.9 mm/kyr). Compared to the Rio Icacos watershed, the most studied tropical site, the chemical weathering fluxes of silica and sodium in the Mengong are 16 and 40 times lower, respectively. This is not only related to the protective role of the regolith, thick in both cases, but also to differences in the hydrological functioning. This is to be taken into account in the calculations of the carbon cycle balance for large surfaces like that of the tropical forest ecosystems on a stable shield at the global level.  相似文献   

2.
A small watershed (160 km2) located in the Massif Central (France) has been chemically, isotopically and hydrologically studied through its dissolved load, bed sediments and soils. This watershed is underlain by basaltic bedrock and associated soils in which the vegetation is dominated mainly by meadows.Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for two different hydrologic periods on the main stream of the Allanche river and its tributaries.The major objectives of this study were to characterize the chemical and isotopic signatures of each reservoir occurring in the watershed. Changes in chemical and isotopic signatures are interpreted in terms of fluctuations of the different components inputs: rainwater, weathering products, anthropogenic addition.Water quality may be influenced by natural inputs (rainwater, weathering processes) and anthropogenic additions (fertilizers, road salts, etc.). Precipitation serves as a major vehicle for dissolved chemical species in addition to the hydrosystem and, in order to constrain rain inputs, a systematic study of rainwaters is carried out over a one year period using an automatic collector. Corrections of rainwater addition using chloride as an atmospheric input reference were computed for selected elements and the Sr/Sr ratio. After such corrections, the geochemical budget of the watershed was determined and the role of anthropogenic additions evaluated through the relationship between strontium isotopes and major and trace element ratios. Thus, 10% of Ca and Na originate in rainwater input, 40 to 80% in fertilizer additions and 15 to 50% in rock weatheringThe cationic denudation rates for this watershed are around 0.3 g s–1 km2 during low water discharge and 0.6 g s–1 km2 in high water stage. This led to a chemical denudation rate of 5.3 mm/1000 years.For solid matter, the normalization of chemical species relative to parent rocks shows the depletion or enrichment in soils and sediments. The use of K and Ca as mobile reference illustrates the weathering state of soils and sediments relative to parent rocks. This weathering state for bed sediments range from 15 to 45% for the K normalization and from 2 to 50% for the Ca normalization. For the soils, the weathering state ranges from 15 to 57% for the K normalization and from 17 to 90% for the Ca normalization.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

4.
红河盆地的化学风化作用:主要和微量元素地球化学记录   总被引:1,自引:0,他引:1  
河流沉积物的元素含量有助于反映其流域的自然风化过程。红河是世界上重要的河流之一,但其沉积物的地球化学研究却几乎没有。本文通过开展红河盆地干流和主要支流40个样品的主要和微量元素地球化学分析,发现红河流域硅酸盐岩的化学风化作用为中等强度,与长江及亚马逊河的风化强度相近,而高于黄河,低于珠江;且化学风化作用受该区域的气候和构造作用控制。  相似文献   

5.
Taiwan is a typical active orogenic belt situated at the collision boundary between the Eurasian Continental Plate and the Philippine Sea Plate. Dissolved major and trace constituents, as well as Sr and Sr isotopes in river waters collected from the Danshuei River basin in northern Taiwan have been studied to evaluate chemical weathering processes. The results of principal component analysis show that the ion sources in these river waters can be categorized into 3 major components: chemical weathering, seasalt contribution and local anthropogenic input. The chemical weathering is the most dominant factor that contributes about 85% of total variances. Significantly increased Na/Cl and Ca/Cl, as well 87Sr/86Sr, were observed in most upper stream samples. The Na/Cl and Ca/Cl ratios in the Dahan Stream, however, are much higher than the Shindien Stream. Even though average rainfall is stronger in the Shindien drainage basin, chemical evidence from river waters supports less intense weathering in the region. Selective dissolution of secondary calcites explains the observed high Ca/Cl, Sr/Cl and Ca/Na in the Dahan Stream. These results highlight the potential importance of tectonic factors, such as uplift and physical erosion in studying chemical weathering in an active orogenic belt.  相似文献   

6.
在有碳酸盐岩分布的河流流域, 河水地球化学主要反映的是风化速率较高的碳酸盐矿物风化的信息, 而硅酸盐矿物风化的信息往往被掩盖掉.北江流域碳酸盐岩和硅酸岩分布广泛, 为追踪其中的硅酸盐矿物风化的信息, 分析了北江河水中溶解无机碳同位素的时空变化.河水样品按4个季节自北江的上游到下游采集6个样点, 分析结果显示, 除上游武江的采样点同位素值季节变化不大外, 中下游采样点的同位素值有明显季节变化, 主要表现在6月份的δ13CDIC显著变轻(-16‰~-19‰).在详细剖析矿物风化过程对碳同位素的影响后, 指出除了显著的碳酸盐矿物风化过程外, 北江流域在夏季还存在明显的硅酸盐矿物风化过程, 大大提高了流域的碳汇作用.   相似文献   

7.
A small watershed (89 km2) underlain by granite or granite-gneiss in the Margeride mountains, southern Massif Central (France), has been studied using the chemical and isotopic composition of its dissolved load, bed sediments and soils. Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for three different hydrologic periods in the main stream of the Desges river and its tributaries. The aim was to characterize the chemical and isotopic signatures of each reservoir in the watershed; signature changes are interpreted as fluctuations in the different influencing components: rainwater, weathering products and anthropogenic addition. In the study area, as in other watersheds in granite environments, the only source for input of chemical species into the dissolved load at high altitude is chemical weathering and atmospheric deposition, whereas at lower altitude, human influence plays a non-negligible role. As precipitation is a major vehicle for the addition of dissolved chemical species into the hydrosystem, a systematic rainwater study using an automatic collector was carried out over one year in order to better constrain rain elemental input. Corrections for rainwater addition, using chloride as an atmospheric-input reference, were computed for selected elements and for 87Sr/86Sr ratios. After these correction, the geochemical budget of the watershed was determined and the role of anthropogenic addition was evaluated based on strontium isotope relationships. For particulate matter, we used the normalization of chemical species relative to parent rocks and the element ratios which reflect the depletion or enrichment in soils and sediments. Both the immobile- and mobile-element approaches have been tested, using Ti/Zr and La/Ce ratios for the former and Ca/Sr, K/Rb, and K/Fe ratios for the latter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
李建刚  何旋  赵禹  刘拓  白金  梁楠 《地质与勘探》2022,58(2):326-334
土壤的矿物及其地球化学特征是指示其风化特征的重要依据.为理解干旱绿洲区土壤发育特征,本文选取新疆焉耆盆地两个土壤剖面对其粒度、矿物、元素地球化学特征进行分析,结果表明:两剖面沉积物的粒度主要以黏粒、粉粒为主,矿物主要为石英、长石和黏土矿物,石英/长石多数小于1,长石以斜长石类为主,化学风化作用极弱.两剖面的化学蚀变指数...  相似文献   

9.
化学风化作用中的稀土元素行为及其影响因素   总被引:22,自引:0,他引:22  
地表风化作用长期以来一直是地球和环境科学研究的焦点问题。风化作用中微量元素地球化学行为的研究不但有助于对一系列全球性问题的认识和理解,而且有助于许多与人类生存密切相关的环境问题的解决。系统总结了近年来国内外在风化作用中的稀土元素地球化学研究领域的主要内容和最新进展,着重介绍了风化壳中稀土元素的分布特征、Ce异常成因、稀土元素的赋存状态和迁移方式、影响稀土元素分布和循环的主要因素,以及风化作用稀土元素地球化学的主要研究方法。最后,分析指出有机质和微生物作用对稀土行为的影响是未来的重要研究方向。  相似文献   

10.
The draw down of CO2 from the atmosphere during mineral weathering plays a major role in the global budget of this greenhouse gas. Silicate minerals remove twice the CO2 of carbonate minerals per mole of calcium in runoff during weathering. Bedrock weathering chemistry was investigated in the White River watershed of northeastern USA to investigate whether there are seasonal differences in carbonate and silicate weathering chemistry. Geographic Information Systems analyses of bedrock geology were combined with major element concentrations in river waters to gain an understanding of the consistency of mineral weathering during three seasons. The percent of carbonate mineralogy comprising the bedrock in tributaries of the White River varied from less than 5% to 45% by area. A mass balance calculation using major element concentrations in waters was applied to estimate the seasonal relationships between bedrock geology and bicarbonate flux. In all tributaries and the main stem of the White River the highest calculated percent of bicarbonate from carbonate mineral weathering was measured in the late fall. The results suggest that carbonate and silicate bedrock weathering processes are seasonally controlled. Thus single season sampling could not accurately represent an entire year's geochemical budget. In the White River, water samples obtained solely during the summer would consistently underestimate the total yearly source of bicarbonate from carbonate bedrock weathering. The same sample set would also provide data that would lead to an underestimation of the yearly atmospheric CO2 draw down by bedrock weathering in the watershed. For example at four of the seven locations studied there was an almost two-fold difference between summer and spring calculated atmospheric CO2 consumption rates.  相似文献   

11.
系统探讨了黔中小流域水体悬浮物和沉积物中微量及稀土元素地球化学特征。结果表明,元素含量在河流与湖泊、悬浮物与沉积物之间均存在明显差异。稀土元素北美页岩标准化分布模式大致为轻稀土相对富集的平坦模式,δEu为0.82~1.25,δCe为0.79~1.25,整体变化不大,均表现为弱异常。麦翁河稀土总量与分布模式均发生异常,主要受上游盘龙煤矿影响。悬浮物的∑REE与pH呈反相关关系,而沉积物的∑REE却与pH表现出正相关关系,表明悬浮物与沉积物中稀土元素行为的控制因素不同。元素相关分析、因子分析及微量元素图解均表明悬浮物与沉积物中的元素具有同源性,主要来源于流域岩石化学风化和土壤物理侵蚀的产物,而某些金属元素Zn、Co、Cu、Cr、Ni则来源于周边工矿企业、农业生产等人为排放。本研究丰富和发展了喀斯特地区水体元素地球化学,揭示了小流域化学风化与物理侵蚀过程中的元素特征和物质输送状况,并为该流域的生态环境现状、治理及管理提供了科学依据和基础资料。  相似文献   

12.
Solute-based geochemical mass balance methods are commonly used in small-watershed studies to estimate rates of a variety of geochemical processes at the Earth’s surface, including primary-mineral weathering and soil formation, and the quantitative contribution of these elemental transfer processes to cation budgets, nutrient cycling, and landscape susceptibility to acid deposition. Weathering rates of individual minerals in watershed mass-balance studies are determined by solving a system of simultaneous linear geochemical mass-balance equations with constant (stoichiometric) coefficients. These equations relate the measured net fluxes to the (known) stoichiometries and (unknown) rates of weathering reactions for multiple minerals in the weathering profiles. Solving the system of equations requires petrologic, mineralogic, hydrologic, botanical, and aqueous geochemical data. The number of mineral-weathering rates that can be determined is limited by the number of elements for which solute mass-balance equations can be written. In addition to calculating mineral weathering rates, elemental transfer into or out of the biomass may also be calculated. Elemental uptake by aggrading forest vegetation can act as an intrawatershed sink for at least some mineral-derived cations, producing mineral weathering rates higher than would be estimated from solute fluxes alone; similarly, element release from decaying forest biomass can result in higher solute fluxes than are produced by weathering alone. The mathematics of, significant contributions from, role of biomass in, and recent advances in, watershed geochemical mass-balance methods are discussed using examples from the Appalachian headwaters watersheds of the Coweeta Hydrologic Laboratory in the southern Blue Ridge Physiographic Province of North Carolina, USA.  相似文献   

13.
Water samples collected from the six reservoirs of Damodar River basin in pre- and post-monsoon, have been analysed, to study the major ion chemistry and the weathering and geochemical processes controlling the water composition. Ca, Na and HCO3 dominate the chemical composition of the reservoir water. The seasonal data shows a minimum concentration of most of the ions in post-monsoon and a maximum concentration in pre-monsoon seasons, reflecting the concentrating effects due to elevated temperature and increased evaporation during the low water level period of the pre-monsoon season. Water chemistry of the reservoirs strongly reflects the dominance of continental weathering aided by atmospheric and anthropogenic activities in the catchment area. Higher concentration of SO4 and TDS in Panchet, Durgapur and Tenughat reservoirs indicate mining and anthropogenic impact on water quality. The high contribution of (Ca+Mg) to the total cations, high concentration of dissolved silica, relatively high (Na+K)/TZ+ ratio (0.3) and low equivalent ratio of (Ca+Mg)/(Na+K) suggests combined influence of carbonate and silicate weathering. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of reservoir water favours kaolinite formation. The calculated values of SAR, RSC and sodium percentage indicate the ‘excellent to good quality’ of water for irrigation uses.  相似文献   

14.
In the northern part of the Indian sub-continent, the Ganga alluvial plain (GAP) feeds its weathering products to the Ganga–Brahmaputra River system, one of the world’s largest fluvial systems. The authors present a geochemical study of the GAP weathering products transported by the Gomati River (the Ganga River tributary) to understand weathering processes of an alluvial plain in a humid sub-tropical climate. A total of 28 sediment samples were collected during the monsoon season and were analysed by X-ray fluorescence spectrometry for 25 major and trace elements. Bulk chemistry of the channel, flood and suspended sediments mostly consists (>90%, >80% and >75%, respectively) of three elements; Al, Si and Fe. Major element concentrations normalised with respect to upper continental crust (UCC) show strong depletion of highly mobile elements (Na, Ca) and enrichment of immobile elements (Ti, Si). Silica enrichment in the sand fraction is probably caused by chemical weathering of feldspar. Mineral sorting during fluvial transportation acts as the single important factor that controls the geochemistry of these weathering products and also strongly influences major and trace element distribution in the individual sediment samples. Trace element (Ba, Cr, Cu, Nb, Ni, Pb, V and Zn) concentrations were strongly correlated with major element (Si, Al, Fe, Mn and K) concentrations indicating that the abundance of trace elements is controlled by the same processes that control the major element distribution in these sediments.The GAP weathering products were geochemically distinguished as arkose to litharenite in rock classification. Chemical mobility, normalised with respect to TiO2 in UCC, indicates that Si, Na, Zr, Ba and Sr, mainly derived from feldspar, muscovite and biotite, are lost during weathering. Iron and Zn remained immobile during weathering and were strongly adsorbed by phyllosilicates and concentrated in fine-grained sediment fractions. The chemical index of alteration indicates that the GAP has experienced chemical weathering of incipient to moderate intensity. The GAP weathering products also demonstrated a progressive incomplete alteration in the alluvial sequence made-up of the Himalayan-derived sediments. A model has been proposed to better understand weathering processes and products of the GAP in temporary storage of ∼50 ka in a humid sub-tropical climate.  相似文献   

15.
Geochemical fluxes from watersheds are typically defined using mass-balance methods that essentially lump all weathering processes operative in a watershed into a single flux of solute mass measured in streamflow at the watershed outlet. However, it is important that we understand how weathering processes in different hydrological zones of a watershed (i.e., surface, unsaturated, and saturated zones) contribute to the total geochemical flux from the watershed. This capability will improve understanding of how geochemical fluxes from these different zones may change in response to climate change. Here, the geochemical flux from weathering processes occurring solely in the saturated zone is investigated. This task, however, remains exceedingly difficult due to the sparsity of subsurface sampling points, especially in large, remote, and/or undeveloped watersheds. In such cases, springflow is often assumed to be a proxy for groundwater (defined as water residing in fully saturated geologic formations). However, springflow generation may integrate different sources of water including, but not limited to, groundwater. The authors’ hypothesis is that long-term estimates of geochemical fluxes from groundwater using springflow proxies will be too large due to the integrative nature of springflow generation. Two conceptual models of springflow generation are tested using endmember mixing analyses (EMMA) on observations of spring chemistries and stable isotopic compositions in a large alpine watershed in the San Juan Mountains of southwestern Colorado. In the “total springflow” conceptual model, springflow is assumed to be 100% groundwater. In the “fractional springflow” conceptual model, springflow is assumed to be an integration of different sources of water (e.g., groundwater, unsaturated flow, preferential flow in the soil, etc.) and groundwater is only a fractional component. The results indicate that groundwater contributions in springflow range from 2% to 100% overall and no springs are consistently composed of 100% groundwater; providing support for the fractional springflow conceptual model. Groundwater contributions are not strongly correlated with elevation, spring contributing area, spring discharge, or seasonality. This variability has a profound effect on long-term geochemical fluxes. The geochemical fluxes for total springflow overestimate long-term solute release by 22–48% as compared to fractional springflow. These findings illustrate that springflow generation, like streamflow generation, integrates many different sources of water reflecting solute concentrations obtained along many different geochemical weathering pathways. These data suggest that springs are not always ideal proxies for groundwater. Springs may be integrating very distinct portions of the groundwater flow field and these groundwater contributions may become mixed at the spring emergence with much younger sources of water that have never resided in the groundwater system.  相似文献   

16.
Geochemical processes were identified as controlling factors of groundwater chemistry, including chemical weathering, salinization from seawater and dry sea-salt deposition, nitrate contamination, and rainfall recharge. These geochemical processes were identified using principal component analysis of major element chemistry of groundwater from basaltic aquifers in Jeju Island, South Korea, a volcanic island with intense agricultural activities. The contribution of the geochemical processes to groundwater chemistry was quantified by a simple mass-balance approach. The geochemical effects due to seawater were considered based on Cl contributions, whereas the effects due to natural chemical weathering were based on alkalinity. Nitrogenous fertilizers, and especially the associated nitrification processes, appear to significantly affect groundwater chemistry. A strong correlation was observed between Na, Mg, Ca, SO4 and Cl, and nitrate concentrations in groundwater. Correspondingly, the total major cations, Cl, and SO4 in groundwater were assessed to estimate relative effect of N-fertilizer use on groundwater chemistry. Cl originates more from nitrate sources than from seawater, whereas SO4 originates mostly from rainwater. N-fertilizer use has shown the greatest effect on groundwater chemistry, particularly when nitrate concentrations exceed 6–7 mg/L NO3–N. Nitrate contamination significantly affects groundwater quality and 18% of groundwater samples have contamination-dominated chemistry.  相似文献   

17.
There is a fast growing interest in understanding the coupling between mineralogical and biological processes responsible for the migration of elements through continental ecosystems. This issue has fundamental impacts at the soil/plant scale because it can explain the tight links between soil and plant development and at the watershed scale because it gives a direct access to the water quality. In the present study, we performed an extended investigation of the bio-geochemical cycle of boron, which is an element known to be suitable for investigating water/rock interactions and vegetation cycling. New B data are provided along the hydro-bio-geochemical continuum in a forest ecosystem (Strengbach basin, Vosges, France), from rainwaters down to the outlet of the basin including systematic analyses of throughfalls, soil solutions, springs and brooks scattered in the watershed. At the watershed scale, we evidence a relationship between the B isotopic composition of river waters and the weathering regime outlining a predominant control of the parent rock mineralogy on the B geochemical behavior. At the soil/plant scale, it appears that the B geochemical cycle is controlled by the vegetation cycling, which is characterized by an uncommon, easy to distinguish, B isotopic composition (δ11B ranging from about +30‰ to +45‰). Each year the amount of B being involved in the vegetation cycle is about four times greater than that of B being exported out of the watershed. At 10 cm depth in soil, where the plant roots are expected to be the most active, we observe a marked seasonal oscillation of the B isotopic values, which is interpreted as resulting from the vegetation activity. A mass balance calculation based on the assumption that that 10B is preferentially accumulated in the biomass tends to indicate that the soil/plant system does not behave at steady state with respect to B.Because of the very distinct B isotopic signature of vegetation and minerals in soil, box modeling allows to quantify the part of the B fluxes involved in the vegetation cycling and the mineral reactions, respectively. This calculation reveals a clear correlation between the amount of B derived from soil weathering and the amount of B absorbed by plant roots. This result clearly supports the idea that a coupling exists between mineral weathering and plant activity, for the study of which B isotopes appear particularly suitable.  相似文献   

18.
The geochemical and isotopic compositions of river water are controlled by different factors. The seasonal and spatial variations in the geochemical composition, δD, δ18O, and δ15N–NO3 of the Kumho River were investigated to reveal the geochemical processes occurring at different seasons. The Kumho River, which runs through different geologic terrains with different land use characteristics, is the largest tributary of the Nakdong River, the longest river in South Korea. The data varied significantly according to the land use and the season. Each monitoring station showed the lowest concentrations of various ions during July, the rainy season, due to the increase of precipitation rate. The ionic concentrations gradually increased downstream by the mineral weathering and anthropogenic activity. At the upper regions of the river, Ca and HCO3, which are closely associated with mineral weathering, were the most dominant cation and anion, respectively. The relatively high Si concentration of the headwater samples, caused by the weathering of volcanic rocks, also showed the importance of weathering in the upper regions mainly composed of volcanic rocks. The downstream regions of the Kumho River are mainly influenced by sedimentary rocks. At the lower reaches of the river, especially near the industrial complexes in Daegu, the third largest city in Korea, Na, Cl, and SO4 became the dominant ions, indicating that the anthropogenic pollution became more important in regulating the chemical composition of the river. The increasing (Ca + Mg + Na + K)/HCO3 ratio downstream also indicates that the anthropogenic effects became more important as the river flows downstream. The isotopic compositions of δD and δ18O indicate that the river waters were significantly affected by evaporation during May and July, but the evaporation effect was relatively low during October. The isotopic composition of δ15N–NO3 increased downstream, also confirming that anthropogenic effects became more significant at the lower reach of the river and near Daegu.  相似文献   

19.
The new non-traditional stable strontium (Sr) isotope has aroused great attention from academic scholars in terms of the continental weathering and marine Sr cycle. The analytical precision of stable Sr isotope using mass spectrometry is better than 0.03‰. The compiled δ88/ 86Sr values vary from -3.65‰ to 1.68‰ in natural reservoirs. Recent findings indicate that multiple processes can cause stable Sr isotope fractionation in Earth surface, including the incongruent dissolution of primary minerals, the formation and adsorption of secondary minerals, the precipitation of calcium carbonate, and the biological cycling. These processes lead to higher δ88/ 86Sr in the liquid phase and lower δ88/ 86Sr in the solid phase, and thus result in different geochemical behavior of stable Sr isotopes in water and sediment during the weathering processes. The δ88/ 86Sr values of river sediment decrease with the increase of weathering intensity, which has the potential to indicate chemical weathering intensity. Meanwhile, further study on the fractionation mechanisms and constraints of stable Sr isotopes in river water plays an important role in tracing chemical weathering processes within the watershed, which will lead to a better understanding of the global ocean Sr cycle.  相似文献   

20.
The terrestrial surface, the “skin of the earth”, is an important interface for global (geochemical) material fluxes between major reservoirs of the Earth system: continental and oceanic crust, ocean and atmosphere. Because of a lack in knowledge of the geochemical composition of the terrestrial surface, it is not well understood how the geochemical evolution of the Earth’s crust is impacted by its properties. Therefore, here a first estimate of the geochemical composition of the terrestrial surface is provided, which can be used for further analysis. The geochemical average compositions of distinct lithological classes are calculated based on a literature review and applied to a global lithological map. Comparison with the bulk composition of the upper continental crust shows that the geochemical composition of the terrestrial surface (below the soil horizons) is significantly different from the assumed average of the upper continental crust. Specifically, the elements Ca, S, C, Cl and Mg are enriched at the terrestrial surface, while Na is depleted (and probably K). Analysis of these results provide further evidence that chemical weathering, chemical alteration of minerals in marine settings, biogeochemical processes (e.g. sulphate reduction in sediments and biomineralization) and evaporite deposition are important for the geochemical composition of the terrestrial surface on geological time scales. The movement of significant amounts of carbonate to the terrestrial surface is identified as the major process for observed Ca-differences. Because abrupt and significant changes of the carbonate abundance on the terrestrial surface are likely influencing CO2-consumption rates by chemical weathering on geological time scales and thus the carbon cycle, refined, spatially resolved analysis is suggested. This should include the recognition of the geochemical composition of the shelf areas, now being below sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号