首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventy sites of sills, flows and dikes from Northeastern Paraná Magmatic Province (PMP), were submitted to paleomagnetic, chemical and radiometric analyses. The rocks are high in TiO2 content, and similar in composition to the rocks from the northern region of PMP. The sills intrude mainly Paleozoic sediments, and can be subdivided into two domains; the northern being characterized by sills showing reversed polarities, and the southern essentially by sills of normal polarities. 40Ar/39Ar dating of three distinct sills gave plateau ages (129.9 ± 0.1, 130.3 ± 0.1 and 131.9 ± 0.4 Ma) that are similar to surface-outcropping flows of the Northern Paraná Basin, and the Ponta Grossa dikes. The new paleomagnetic data combined with existing data from the northern PMP allowed the calculation of a paleomagnetic pole at 71.4° E and 83.0° S (N = 92; α95=2.4°; k = 39). This pole is in good agreement with poles for central and southern PMP, which are slightly older than the northern PMP, as well as for the contemporaneous Central Alkaline Province (Paraguay) on the western side of PMP. In contrast, the coeval pole for the Ponta Grossa dikes (eastern border of PMP), however, is slightly displaced from that group of poles, suggesting that dikes in that area may have undergone some tectonic tilting.  相似文献   

2.
Lacustrine sediments of the Wilson Creek Formation in the Mono Basin, California, record a paleomagnetic field excursion constrained by 14C and 40Ar/39Ar geochronology to have occurred within the last 50 ka. However, 14C and 40Ar/39Ar ages are discordant, making it difficult to distinguish which of two possible excursions during this period, the Mono Lake or Laschamp, is recorded in the Mono Basin. New 40Ar/39Ar age determinations from sanidine, as well as the first biotite and obsidian ages, for three of the nineteen rhyolitic ashes intercalated with these sediments are presented and compared to previous 14C and 40Ar/39Ar data sets. Although the sanidine ages of the three ashes are stratigraphically consistent with each other and previously determined 40Ar/39Ar ages for other ashes in the Wilson Creek Formation, each is significantly older than 14C ages obtained from stratigraphically equivalent beds, relative paleointensity field correlations, oxygen isotope records, and glacial histories. These data indicate an absence of juvenile, eruptive crystals and most likely reflect the incorporation of crystals from older volcanic centers or underlying sediment. We examine the strengths and weaknesses of all available geochronologic data for the section exposed at Wilson Creek to arrive at an internally consistent set of age constraints. Using these constraints we propose two new relative paleointensity correlations for the section, both of which indicate that the excursion recorded in the Mono Basin occurred at ~30–34 ka on the Greenland Ice Sheet Project 2 (GISP2) ice core time scale.  相似文献   

3.
 Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16 000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33±0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32±0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities. Received: 13 January 1997 / Accepted: 7 May 1997  相似文献   

4.
Based on the results of the preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization (NRM) is revealed (D = 353.2°, I = 53.0°, K = 58, and α95 = 3.4°). The peculiarities of the distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 billion years ago during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia has the coordinates Plat = 54.5°, Plong = 224.0°, and A95 = 3.9° and is located in the immediate vicinity of the known Paleoproterozoic (1.9–1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014).  相似文献   

5.
Newly discovered olivine phlogopite lamproite dikes intrude Jurassic siliciclastic strata in the Green River Desert subregion of the western Colorado Plateau tectonic province in southeastern Utah. The dikes yield an age of 22 Ma both from 40Ar/39Ar step-heating of phlogopite and from isochron modeling of laser-fused sanidine. This age is similar to those of mica-rich minettes and melanephelinites of the Wasatch Plateau about 125 km northwest and within the age range of the Navajo potassic volcanic field about 150 km to the southeast. The dikes intruded a pre-existing, northwest-oriented fracture system containing previously introduced bitumen, indicating that some regional lineaments of this trend are Early Miocene or older. The dikes are highly LREE-enriched, and display lamproite-specific REE ratios and phlogopite and sanidine compositions. Incompatible element and radiogenic isotope (Nd–Sr–Pb) ratios suggest that lithospheric source material modified by ancient subduction processes, together with younger asthenospheric source components, produced the melt. Timing of the intrusion coincides with the transition from Early–Middle Cenozoic, calc-alkaline plutonism to the dominantly mafic, Basin and Range type volcanism of the Late Cenozoic. While the lamproite occurrence indicates thermal input from the mantle, model non-uniqueness for both magma source depths and geophysical structure prevents quantitative comparison of Early Miocene with present-day lithospheric thickness.  相似文献   

6.
Determinations of40Ar/39Ar and U-Th-Pb are reported for three clasts from the Abee (E4) enstatite chondrite, which has been the object of extensive consortium investigations. The clasts give40Ar/39Ar plateau ages and/or maximum ages of 4.5 Gy, whereas two of the clasts give average ages of 4.4 Gy. Within the range of 4.4–4.5 Gy these data do not resolve any possible age differences among the three clasts.206Pb measured in these clasts is only ~1.5–2.5% radiogenic, which leads to relatively large uncertainties in the Pb isochron age and in the207Pb/206Pb model ages. The Pb data indicate that the initial207Pb/206Pb was no more than 0.08±0.07% higher than this ratio in Can?on Diablo troilite. The U-Th-Pb data are consistent with the interpretation that initial formation of these clasts occurred 4.58 Gy ago and that the clasts have since remained closed systems, but are contaminated with terrestrial Pb. The40Ar/39Ar ages could be gas retention ages after clast formation or impact degassing ages. The thermal history of Abee deduced from Ar data appears consistent with that deduced from magnetic data, and suggests that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, and experienced no appreciable subsequent heating.  相似文献   

7.
The plutonic intrusion known as the Msissi norite (southern Morocco), which represents the single paleomagnetic reference pole for Africa in Devonian times, has been investigated. This Msissi intrusion is in fact an alkaline gabbro, a teschenite. K/Ar dating on separate biotites yields a 140 Ma age. Paleomagnetic results reveal a large scatter of isolated directions that precludes the computation of any Late Jurassic/Early Cretaceous paleopole. All these data lead us to reject this intrusion as a reference pole for the Devonian in Africa. The paleoposition of Africa in Devonian times remains, therefore, largely unknown.  相似文献   

8.
In several xenolithic ultramafic rocks from the Kola Peninsula, including a magnetic separate, abnormally high40Ar/39Ar ratios persisted at low and high temperatures. The lowest40Ar/39Ar ratio was consistently observed at intermediate temperatures (900–1100°C), indicating an apparent age of 2.8–3.1 b.y.; however, this may not indicate the formation age.The quantity of excess40Ar was estimated at each temperature fraction, adopting ages inferred from published Rb-Sr ages or the minimum40Ar/39Ar age. Excess40Ar is abundantly trapped both in mineral lattices and nonretentive trapping sites, but the trapping sites are different from those of in-situ radiogenic40Ar. The high temperature component of excess40Ar is considered to represent Ar dissolved during mineral formation in the upper mantle or the lower crust.A correlation between the amount of high temperature excess40Ar and36Ar exists for some samples. The40Arexcess/36Ar ratios of the rocks of probable upper mantle or lower crust origin vary from about 10 000 to 35 000, which may suggest large fluctuations of this ratio in the deep interior of the earth. The high value implies that most36Ar was already degassed from the earth's interior at least 2 or 3 b.y. ago.  相似文献   

9.
Paleomagnetic results are reported from 13 sites of red beds of Early Devonian age from Central Iran. Detailed paleomagnetic analyses were carried out. Two types of partial progressive demagnetization were applied, one using alternating magnetic fields, the other heating. These procedures resulted in the detection of the characteristic remanences with a mean direction with D = 24.2°, I = 1.3°95 = 10.1°). The paleomagnetic pole is located at 51.3°N, 163.7°W. If one shifts the Iranian landmass to its most likely position in the Gondwana configuration, then the position of the paleomagnetic pole coincides with the alternative polar wander path [14,15] which crossed South America in early Middle Paleozoic times.  相似文献   

10.
The ~ 14 km diameter Jänisjärvi impact structure is located in Svecofennian Proterozoic terrain in the southeastern part of the Baltic shield, Karelia, Russia. Previous radioisotopic dating attempts gave K/Ar and 40Ar/39Ar ages of 700 ± 5 Ma and 698 ± 22 Ma, respectively, with both results being difficult to interpret. Recent paleomagnetic results have challenged these ages and proposed instead ages of either 500 Ma or 850–900 Ma. In order to better constrain the age of the Jänisjärvi impact structure, we present new 40Ar/39Ar data for the Jänisjärvi impact melt rock. We obtained five concordant isochron ages that yield a combined isochron age of 682 ± 4 Ma (2σ) with a MSWD of 1.2, P = 0.14, and 40Ar/36Ar intercept of 475 ± 3. We suggest that this date indicates the age of the impact and therefore can be used in conjunction with existing paleomagnetic results to define the position of the Baltica paleocontinent at that time. Argon isotopic results imply that melt homogenization was achieved at the hundred-micrometer scale certainly, because of the low-silica content of the molten target rock that allows fast 40Ar? diffusion in the melt. However, the large range of F(40Ar?inherited) (4.1% to 11.0%) observed for seven grains shows that complete isotopic homogenization was not reached at the centimeter and perhaps the millimeter scale. The F(40Ar?inherited) results are also in good agreement with previous Rb and Sr isotopic data.  相似文献   

11.
The paper presents the results of experimental rock-magnetic, paleomagnetic and palynologic study of Paleolithic sediments sampled along two profiles in the Akhshtyrskaya cave, situated in the vicinity of Black Sea shore. In the upper part of profiles, some magnetite was observed; in the middle and lower parts, strongly oxidized non-stoichiometric magnetite and hematite prevail. Thin maghemite covers on the surface of fine magnetite grains are present in the majority of specimens. Natural remanence has one characteristic component (CHRM), mostly of chemical origin, although in few specimens containing magnetite it may be sedimentary. Directions of CHRM obtained by standard paleomagnetic methods revealed anomalous pattern only in layer 3/2, which is slightly older than the overlying layer 3/1 whose age was established as (35±2)×103 years BP by the U-Th method. This suggests that this paleomagnetic anomaly (PMA) can be correlated with Kargapolovo excursion dated on about (45−39)×103 years BP. In the remaining overlying and underlying layers, directions of CHRM are grouped around the present geomagnetic field. Depth distributions of scalar magnetic parameters generally coincide with the lithological division of the profiles. Palynologic study revealed the presence of 22 pollen zones. Five thermomers separated with colder periods were found in the middle and lower parts of profile. The non-magnetite composition of magnetic fraction of the majority of studied sediments — oxidized nonstoichiometric magnetite and hematite — resulted in the lack of correlations between paleoclimatic and scalar magnetic characteristics.  相似文献   

12.
A rhyolitic lava flow from Basiluzzo islet (Aeolian Islands), has been analysed with the Fission tracks (FT) and 40Ar–39Ar methods on glass, and with the U/Th method on whole rock to constrain its age and to compare the behaviour of different dating methodologies on glass samples late Quaternary in age. Laser 40Ar–39Ar total fusion analyses were performed on populations of grains. Due to the low yields of radiogenic 40Ar the age data are characterised by very high errors. The weighted average of the ages of the whole population is 55.7 ± 8.7 ka (MSWD = 0.7). The isochron age calculated on all points is 40.6 ± 11.4 ka (MSWD = 0.6), with an initial 40Ar/36Ar ratio of 297.8 ± 1.8; the isochron is characterised by very little spread among points. The procedure named ‘point-counting technique’ was adopted in FT dating. Spontaneous track mean size resulted reduced by around 20% compared to induced tracks, which indicates that the determined FT age, 28.6 ± 3.6 ka, is a reduced age, due to a certain amount of track annealing. For this reason the plateau technique for correcting thermally lowered ages was applied. We determined a plateau age (commonly assumed as a reliable estimate of the glass formation age) of 43.4 ± 7.1 ka. Four sub-samples of whole rock from Basiluzzo lava flow have been analysed using U/Th isochron method. The 238U/232Th and 230Th/232Th activity ratios of sub-samples have been determined by alpha counting and plotted on an isochron diagram. The resulting age is 46 ± 8 ka and the 234U/238U activity ratios are always close to one, demonstrating that no significant processes of alteration have occurred. The relatively high error associated with the age is due to a low fractionation of U/Th ratio in the analysed whole rocks. The ages obtained with different methods, 43.4 ± 7.1 ka (FT plateau age), 40.6 ± 11.4 ka (40Ar–39Ar isochron age of all grains), and 46 ± 8 ka (U/Th isochron) agree at the 1σ level, excluding a Holocene age for this sample. This could be valuable information for the Department of Civil Protection because it seems to mitigate the potential risk for present volcanic activity in the area. All ages are affected by very high analytical errors, which are due to the characteristics of the material analysed. Young ages result in low tracks numbers (FT dating) and barely detectable amounts of radiogenic 40Ar in the presence of high atmospheric contamination (40Ar–39Ar dating). Stratigraphic successions without strict chronologic constraints might however benefit even from age data with low precision.  相似文献   

13.
A rock-magnetic and paleomagnetic investigation was carried out on eleven Pleistocene and Pliocene 40Ar/39Ar dated lava flows from the Tepic-Zacoalco rift region in the western sector of the Trans-Mexican Volcanic Belt (TMVB) with the aim of obtaining new paleomagnetic data from the study region and information about the Earth’s magnetic field recorded in these rocks. Rock-magnetic experiments including measurement of thermomagnetic curves, hysteresis parameters and isothermal remanence acquisition curves were carried out to find out the carriers of remanent magnetisation and to determine their domain structure. Although some samples were characterised by the presence of a single ferromagnetic phase (magnetite), in most cases more phases were observed. Analysis of hysteresis parameters showed a mixture of single domain and multidomain particles, the fraction of the latter varying between 40% and 80%. Paleomagnetic results were obtained in all sites, although in 7 sites characteristic remanence directions and remagnetisation circles had to be combined in order to calculate site means. The six Pliocene sites not showing intermediate polarity yielded a paleomagnetic pole (latitude ? = 81.1°, longitude λ = 94.3°) which roughly agrees with the expected one. Paleomagnetic directions do not indicate significant vertical-axis block rotations in the western TMVB area. Reversed polarities observed can be correlated to the Gilbert chron, normal polarities to the Gauss chron or the Brunhes chron and intermediate polarities to the Cochiti-Gilbert or the Gilbert-Gauss transition. The reversed or intermediate polarity magnetisation recorded in one of the sites (542 ± 24 ka) corresponds either to the West Eifel 4 or the West Eifel 5 excursion, while the reversed polarity observed in the other site (220 ± 36 ka) very likely provides new evidence for the Pringle Falls excursion or the event recorded in the Mamaku ignimbrite.  相似文献   

14.
A joint palaeomagnetic and 40Ar/39Ar study has been performed on two olistolithic blocks from the Cabrières Wildflysch in the Montagne Noire region of the Massif Central in France. There, andesitic volcanic and volcaniclastic rocks of Llanvirn-Early Caradoc age (ca 470-458 Ma) occur. Despite extensive secondary alteration, destruction of the dominant magnetic mineral phase and 40Ar/39Ar whole rock experiments that demonstrate that the volcanic rocks suffered significant argon loss, a positive fold test and the presence of dual polarities suggest that a primary, Ordovician magnetisation has mostly survived. This is one of the few documented cases where the argon system was substantially reset whilst a subordinate set of small, relatively unaltered magnetite grains, probably hosted in silicates, still carry the original, in this case Ordovician, remanence.The new data show that the Montagne Noire region was located at high southerly latitudes (68° +17/-15) during the Mid-Ordovician. This latitude represents the location for NW Gondwana of which the Massif Central was a part. Palaeomagnetic data from all the Central European massifs and terranes demonstrate a close link to the Gondwana Margin during the Lower and Middle Ordovician.  相似文献   

15.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

16.
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1 precision of±0.25%–0.4% (±0.07–0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1 precisions averaging ±0.25%. Plateau ages from multiple (n=3–8) samples of individual ignimbrites show 1 within-unit precision of ±0.1%–0.4% (±0.04–0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1–3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west.  相似文献   

17.
The results of paleomagnetic studies and paleointensity determinations from two Neoarchaean Shala dikes with an age of ~2504 Ma, located within the Vodlozerskii terrane of the Karelian craton, are presented. The characteristic components of primary magnetization with shallow inclinations I = ?5.7 and 1.9 are revealed; the reliability of the determinations is supported by two contact tests. High paleointensity values are obtained by the Thellier–Coe and Wilson techniques. The calculated values of the virtual dipole moment (11.5 and 13.8) × 1022 A m2 are noticeably higher than the present value of 7.8 × 1022 A m2. Our results, in combination with the previous data presented in the world database, support the hypothesized existence of a period of high paleointensity in the Late Archaean–Early Proterozoic.  相似文献   

18.
40Ar/39Ar dating results on seven volcanic rocks from four areas of the Deccan Traps, India, suggest that volcanic activity more than 70 Ma ago might have occurred at least in limited areas.In the Igat Puri area, the uppermost flow shows an40Ar/39Ar age of 63 Ma, whereas a lower flow has an age of around 82–84 Ma.40Ar/39Ar ages of samples from the Bombay area also seem to favor the occurrence of volcanic activity more than 70 Ma ago. One rhyolite dyke from the Osam Hill in the Girnar Hill area shows a well-defined plateau age of 68 Ma, whereas two tholeiitic basalts from the Mahabaleshwar area indicate a total40Ar/39Ar age of around 63–64 Ma, though they show the effect of secondary disturbance in the age spectra.The volcanic activity(ies) more than 70 Ma ago may correspond to precursory one(s) for the main volcanic activity around 65 Ma ago in the Deccan Traps.  相似文献   

19.
Alpine biotites containing excess40Ar have been analysed by step-heating argon analysis of both neutron irradiated and unirradiated samples. In addition to age spectra the data are discussed in terms of the thermal release of40Ar,39Ar,37Ar and36Ar and also displayed on a correlation plot of36Ar/40Ar vs.39Ar/40Ar which is used to interpret the data and present a model of isotopic evolution during metamorphic cooling. This diagram overcomes misleading complications of isochron plots. The samples exhibit the following argon systematics: (1) flat age spectra for 80–90%39Ar release with anomalously old ages but early gas fractions that approximate the accepted cooling ages; (2) each sample shows decreasing36Ar/40Ar with increasing temperature of heating step with three samples having a negative correlation of36Ar/40Ar vs.39Ar/40Ar and one a positive correlation; (3) there appear to be two36Ar components, one released at high temperatures and correlated with radiogenic40Ar and one released at low temperatures which is not correlated with radiogenic40Ar; and (4) there is no significant effect of neutron irradiation on the release of40Ar and36Ar.Interpretation suggests that these biotites contain a record of the evolution and isotopic composition of ambient argon retained within the metamorphic host rocks during cooling. After incorporation of argon of high40Ar/36Ar another argon component, of atmospheric composition, was retained at lower temperature and argon partial pressures.  相似文献   

20.
40Ar/39Ar age determinations have been carried out on eight samples of melt rocks and one of the maskelynite from Mistastin Lake impact crater, Labrador. The observed40Ar* evolution spectra of the impact melts fall into distinct groups which correlate with petrographic variations. The release patterns of six of the melt rock samples define an age plateau in the range 34–41 m.y.; the other two have complex spectra which indicate incomplete equilibration of inclusions. Four of the samples with well-defined plateaux exhibit a high-temperature sag in their40Ar/39Ar ratio similar to that observed in some lunar samples. Maskelynite gives a partially overprinted spectrum which rises monotonically to a final age near 700 m.y., approximately half the age of the country rocks. The data from the melt samples are interpreted as indicating an age of 38 ± 4 m.y. for the Mistastin Lake impact event. Previously, it had been considered that this crater was 202 ± 25 m.y. old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号