首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   

2.
In this article, we describe the geological features of the Ediacaran (upper Sinian), lower Cambrian and lower Silurian shale intervals in the Upper Yangtze Platform, South China, and report on the gas potential of 53 samples from these major marine shale formations. Reflected light microscopy, total organic carbon (TOC) measurement, Rock-Eval, carbon isotope ratio analysis, thermovaporization gas chromatography (Tvap-GC), and open pyrolysis gas chromatography (open py-GC) were used to characterize the organic matter. Measured TOC in this research is normally >2% and averages 5%. TOC contents are roughly positively correlated with increasing geological age, i.e. lower Silurian shales exhibit generally lower TOC contents than lower Cambrian shales, which in turn commonly have lower TOC contents than Ediacaran shales. Kerogen has evolved to the metagenesis stage, which was demonstrated by the abundant pyrobitumen on microphotographs, the high calculated vitrinite reflectance (Ro = 3%) via bitumen reflectance (Rb), as well as δ13 C of gas (methane) inclusions. Pyrolysates from Tvap-GC and open py-GC are quantitatively low and only light hydrocarbons were detected. The lower Silurian shale generally exhibits higher generation of hydrocarbon than the lower Cambrian and Ediacaran shale. Cooles’ method and Claypool’s equations were used to reconstruct the original TOC and Rock-Eval parameters of these overmature samples. Excellent original hydrocarbon generation was revealed in that the original TOC (TOCo) is between 5% and 23%, and original S1+S2 (S1o+S2o) is ranging from 29 to 215 mg HC/g rock.  相似文献   

3.
Petrographic analyses were carried out on thin coals and coaly sediments from the Lower Carboniferous Mattson Formation at Clausen Creek and Jackfish Gap-Yohin Ridge in the northern part of the Liard Basin, northern Canada. The composition and optical characteristics indicate that the coals are high-volatile bituminous B, predominantly sapropelic (canneloid) and accumulated subaquatically.The coals are dominantly composed of inertinite-rich and exinite-rich durities with subsidiary inertites and clarodurites; vitrite is minor and liptite is rare. The inertinite-rich microlithotypes are dominated by semifusinite, but micrinite, semimacrinite and ?resino-inertinites are abundant. Sporinite, comprising megaspores, crassispores, tenuispores and miospores, is the dominant liptinite maceral with subsidiary cutinite and minor alginite. Except for pyrite, mineral matter is minimal.Three populations of telocollinite are observed: a low-reflectance variety (I), commonly associated with micrinite (as vitrinertite), displays weak brown fluorescence and a reflectance some 0.4-0.5% lower than type II; type II is non-fluorescing telocollinite, with intermediate reflectance (0.67-0.74% Rom), it occurs as vitrite and is also associated with micrinite; and a higher-reflectance telocollinite (III), having no fluorescence or association with micrinite, has variable reflectance (0.74-0.8% Rom) implying higher oxidation or gelification levels.The abundance of semimacrinite, macrinite and ?resino-inertinites in inertites and durites (I) suggests that much of the peat accumulated subaquatically. Furthermore, fluorescing vitrinite and an abundance of micrinite (derived by oxidation or coalification of bituminite), suggest that the coal accumulated under anaerobic conditions. The predominance of semifusinite in humic laminae and micrinite in sapropelic layers suggests extensive surface or near-surface oxidation of the peat. Oxidised sporinites suggest that they were wind-borne.Depositional environment is interpreted as marginal marine, perhaps in shallow lakes in the middle to upper delta plain. Peat accumulations probably began subaquatically at the oxygen-hydrogen sulphide interface, but periodic subaerial exposure and natural oxidation gave rise to the high inertinite coals. Upper Mattson coals are interbedded with algal laminites and probably accumulated in a lagoonal setting.  相似文献   

4.
The hydrocarbon secreting alga Botryococcus has been identified in organic remains of sediments ranging from Precambrian to Recent, and is believed to have been a major source material for petroleum generation throughout the geological time. In some petroleum source rocks of Lower Palaeozoic and Precambrian age, identification of the alga is only possible by electron microscopy. Transmission electron microscopy (TEM) has been used in the present study to identify microstructures of the algal remains in a range of oil shales and petroleum source rocks. It has been established that Botryococcus is the predominant alga in the Kukersite oil shale of Estonia. Similarly, the alga has been shown to be a major contributor to petroleum source rocks in Cambrian and Precambrian sedimentary basins in Australia. TEM has been applied to observations of Botryococcus in torbanites and to products from simulated maturation experiments on torbanite. A comparison with algal remains from Cambrian and Precambrian sediments ranging from undermature to overmature, enabled the distinction of organic matter in various stages of oil generation. Maturation/thermal effects on alginite have been established by reflectance and fluorescence, and compared with experimental results.  相似文献   

5.
Marine, organic-rich rock units commonly contain little for vitrinite reflectance (VR0) measurement, the most commoly used method of assessing thermal maturity. This is true of the Lower Jurassic “Nordegg Member”, a type I/II, sulphur-rich source rock from the Western Canada Sedimentary Basin. This study examines the advantages and pitfalls associated with the use of Rock-Eval Tmax and solid bitumen reflectance (BR0) to determined maturity in the “Nordegg”. Vitrinite reflectance data from Cretaceous coals and known coalification gradients in the study area are used to extrapolate VR0 values for the “Nordegg”.Tmax increases non-linearly with respect to both BR0 and extrapolated VR0 values. A sharp increase in the reflectaance of both solid bitumen and vitrinite occurs between Tmax 440–450°C, and is coincident with a pronounced decrease in Hydrogen Index values and the loss of solid bitumen and telalginite fluorescence over the same narrow Tmax interval. This Tmax range is interpreted as the main zone of hydrocarbon generation in the “Nordegg”, and corresponds to extrapolated VR0 values of 0.55–0.85%. The moderate to high sulphur contents in the kerogen played a significant role in determining the boundaries of the “Nordegg” oil window.A linear relationship between BR0 and extrapolated VR0, as proposed elsewhere, is not true for the “Nordegg”. BR0 increases with respect to extrapolated VR0 according to Jacob's (1985) formula (VR0=0.618×(BR0)+0.40) up to VR0≈0.72% (BR0≈0.52%). Beyond this point, BR0 increases sharply relative to extrapolated VR0, according to the relatioship VR0 = 0.277 × (BR0) + 0.57 (R2 = 0.91). The break in the BR0−VR0 curve at 0.72%VR0 is thought to signifiy the peak of hydrocarbon generation and represents a previously unrecognized coalification jump in the solid bitumen analogous to the first coalification jump of liptinites.  相似文献   

6.
Four shallow boreholes were drilled in the Hils syncline, northern Germany, in order to determine quantitatively the amount of hydrocarbons generated and expelled during maturation of a typical kerogen-type-II-bearing source rock. The holes penetrated the carbonceous Lias shales (Posidonia shale, Lower Toarcian) and part of the adjacent Dogger α and Lias δ mudstones. The maturity of the organic matter in the cores recovered ranges from immature (0.48% R̄0) to overmature 1.45% R̄0) due to location of the Hils syncline in the vicinity of the Vlotho Massif, which is deep-seated intrusive body. Facies variations of the Lias within the short geographical distances in the study area are negligible.Organic matter mass balance calculations were based on detailed organic geochemical analyses of residual material in the Lias shales (kerogen, bitumen etc.) and on the evidence of a uniform initial composition of these sediments in the study area. Dead carbon determinations supported this latter criterion but were not used as a parameter in the calculations.About 50% of the initial kerogen was transformed into oil, gas and inorganic compounds during the vitrinite reflectance increase from 0.48 to 0.88% R̄o and only marginally more during the maturity increase from 0.88 to 1.45% R̄o. Only a small portion of the generated material remained in the source rock even at a relatively early stage of generation (0.68% R̄o). Expulsion efficiency of oil plus gas reached a value of 86% at the end of the main generation stage (0.88% R̄o).  相似文献   

7.
Based on the tested data of pressure and vitrinite reflectance of some wells in sedimentary basins, abnormal high pressure is regarded as not the only factor to retard the increase of vitrinite reflectance (R o). Apart from the types of the organic matter, the physical environment (temperature and pressure) and chemical environment (fluid composition and inorganic elements) will result in the abnormal vitrinite reflectance values in the sedimentary basins. This paper tested trace elements and vitrinite reflectance data from the the abnormal high pressure and normal pressure strata profiles, respectively, and found that the acidic and lower salinity starta are favorable for the increase of R o. By discussing the corresponding relationship between the contents of some trace elements in the mudstone and the vitrinite reflectance values, the typical trace elements were found to suppress and/or catalyze the vitrinite reflectance of organic matter, while the elements of Ca, Mn, Sr, B, Ba and P may result in the retardation of R o. However, elements of Fe, Co, Zn, Ni and Rb may catalyze the organic matter maturation. This study is conductive to the organic maturation correction, oil and gas assessment and thermal history reconstruction by the paleothermometry. Translated from Acta Geologica Sinica, 2006, 80(11): 1760–1769 [译自: 地质学报]  相似文献   

8.
Results of an organic petrographic study of the Kupferschiefer (Zechstein, Upper Permian) in northern Germany are presented. Because vitrinite occurs only sporadically in this black shale, the random reflectance (Rr) of a relatively high reflecting, vitrinite-like variety of bituminite was measured as a maturity parameter and the problems connected with this procedure were investigated.The main organic component is bituminite, generally with an abundance of more than 90%. Sporomorphs and algae are relatively scarce, inertinite is usually a trace component, and vitrinite is present only in some samples taken close to the coast of the Zechstein sea. Migrabitumen also occurs in small amounts in a few samples. The range of the bituminite reflectance values is often considerable and depends on rank, anisotropy, particle size, porosity, and shearing. Interpretation of the reflectance values is made difficult by differences of up to 0.4% Rr between layers within the Kupferschiefer. Hydrothermal alteration may also be present. The difference between the reflectance of the light and normal varieties of bituminite disappears between 0.9 and 1.2% Rr.Bituminite behaves in a way very similarly to vitrinite during coalification. Their reflectance is identical between 2 and 4% Rr. Below 2% Rr, the reflectance of bituminite is lower than that of vitrinite. Linear regression curves valid up to 4% Rr were calculated for Rmax versus Rr and for Rr versus Rmax. Taking certain limitations into consideration, bituminite reflectance may be used as a coalification parameter.  相似文献   

9.
一种页岩含气性热演化规律研究的模拟实验方法   总被引:2,自引:1,他引:1  
目前针对页岩气赋存规律研究的热模拟实验主要是沿袭常规油气热模拟方法,以粉末态样品开展模拟,研究对象为岩石生成并排出的烃类气体,这种模拟方式未明确页岩气的实质为"滞留气",并且模拟后样品无法开展扫描电镜分析,不能确定岩石孔隙结构变化规律。本文通过石英玻璃管封装块状样开展页岩生烃热模拟实验,并结合一套数据处理方法,尝试建立了一种适合页岩气研究的热模拟实验方法,研究泥页岩在不同演化阶段(Ro范围为0.596%~2.143%)不同赋存状态气体的含量以及岩石微观孔隙特征的变化情况。结果表明,泥岩及油页岩样品的排出气及解析气含量在高成熟度阶段(400℃以后)有明显增加的趋势,结合扫描电镜微观结构分析显示这是由于有机质生气量以及无机孔隙均有增加。本方法可以研究页岩热演化过程中不同赋存状态气体含量及微观孔隙结构的变化,为页岩气勘探开发提供了一种可参考的方法。  相似文献   

10.
Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a “remaining” gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min−1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10−11 K min−1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation (Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation (Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values (Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures (Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.  相似文献   

11.
Two samples from the upper and lower horizons of the Irati oil shale of the Paraná Basin, Brazil were sampled in a single borehole, and analysed using organic petrography and geochemistry. The results are interpreted in terms of the kerogen type, maturity and depositional environment of the two horizons.Organic petrography shows the oil-shales to be composed of a mineral groundmass, mainly clay minerals, carbonate and pyrite, associated, and sometimes impregnated, with fluorescing organic material and disseminated phytoclasts. Humic material is fairly rare and mostly present as very small particles. The liptinitic particles are mostly alginite (A and B), sporinite and more rarely resinite. Reflectance measurements (upper seam = 0.34% R0; lower seam = 0.40% R0) indicate an equivalent rank of lignite/sub-bituminous coal (ASTM), i.e. immature with respect to oil and gas generation. Different organic geochemical methods (Rock-Eval pyrolysis, solvent extraction, GC and GC-MS) demonstrate both samples to be immature, rich oil-shales (100–114 kg/ton) containing Type I kerogen, of a dominantly bacterially-degraded algal origin deposited in a lacustrine environment. The presence of Botryococcus suggests deposition under fresh/brackish water conditions.A tentative interpretation of the extract and vitrinite reflectance data suggests a maximum paleo-burial of between 1.3 and 2.8 km for the analysed section of the Irati Formation.  相似文献   

12.
Levels of organic maturity of Mesozoic and Tertiary sequences outcropping in the Central Apennines have been established, using vitrinite reflectance techniques, the Thermal Alteration Index and fluorescence colours of organic matter dispersed in sediments. These results provide new constraints throughout the Meso-Cenozoic evolution of this crustal sector. In exploration geology, vitrinite reflectance provides data on hydrocarbon maturation by constraining organic matter maturity. In sedimentary basin modelling, it is adopted to define the palaeothermal regime. Vitrinite reflectance (Ro) also provides information on the burial history of sedimentary basins and may be employed to estimate tectonic uplift and erosion rates. Thermal Alteration Index (TAI) and fluorescence colour values can be correlated with Ro and may be used to estimate the degree of maturation when vitrinite is absent. Samples derived from the Sabini and Tiburtini Mts, in slope facies between the Latium–Abruzzi carbonate Platform and the Umbria–Marche pelagic Basin; from the Simbruini and Ernici Mts, in carbonate Platform facies, and from upper Miocene turbiditic deposits outcropping between the Olevano–Antrodoco Une, towards the West, and the Marsica slope facies, towards the East. Both the pre-terrigenous Meso-Cenozoic sequences show a low grade of organic maturity: the Sabini and Tiburtini Mts show Ro values that are less than 0.4%, and the Simbruini–Ernici Range show Ro values that range between 0.5% and 0.65%. Field analysis indicates that the cause of these low maturity levels is that thick sequences of turbidites were never deposited during the Neogene evolution of the Apennine thrust belt. Moreover, Upper Miocene turbiditic deposits also show low maturity levels, with Ro values that are less than 0.5%, indicating that these deposits were never overthrusted by huge volumes of rocks, during the chain building. The slight increase in the maturity level recorded in the Marsica area may be related to local heating along shear zones in areas of strike-slip tectonics.  相似文献   

13.
The organic rich Safer shales exposed in the north-central part of onshore Marib-Shabowah Basin are evaluated and their depositional environments are interpreted. Total organic carbon contents (TOC) of the shales range from 1.02–16.8 wt%, and yield hydrogen index (HI) values ranging from 130 to 820 mg HC/g TOC, consistent with mainly Type II with minor contributions from Type I and mixed Types II–III kerogens. The Safer shale samples have vitrinite reflectance values in the range of 0.5–1.0 Ro%, indicating early mature to peak mature stage for oil generation. Tmax values range from 429–438 °C, which are in reasonably good agreement with vitrinite reflectance data. Kerogen microscopy shows that the Safer shales are characterized by high amounts of organic matter, consisting predominantly of yellow fluorescing amorphous organic matter and alginite of marine origin. This is supported by their high content of hydrogen rich Type II and I oil-prone kerogen.The biomarker distributions of the Upper Jurassic Safer extracts are characterized by dominant low to medium molecular weight compounds (n-C14 to n-C20), low Pr/Ph ratio (<1.0), high phytane/n-C18 ratios (0.82–2.68), and predominant regular sterane C27. All biomarker parameters clearly indicate that the organic matter was derived from marine algal inputs and deposited under anoxic (reducing) conditions. Hypersaline conditions also prevailed during deposition of these sediments, as indicated by the presence of gammacerane.  相似文献   

14.
Palaeo-heat flow values and thicknesses of eroded Permo-Carboniferous sediments in the Saar Basin were evaluated using one dimensional thermal modelling techniques. Thermal, burial and erosion histories for 16 wells were calibrated by comparing measured and calculated vitrinite reflectance using the kinetic EASY%Ro algorithm and by comparing measured and calculated temperature data. On the basis of 37 wells, coalification maps were constructed revealing a syn-kinematic coalification pattern. Thermal maturity of the sediments can only be explained by deep burial and moderate heat flows during time of maximum burial, i.e., in the Permo-Carboniferous. Calculated heat flow data range between 50 and 75 mW/m2, which implies a crustal thickness between 30 and 40 km during the time of maximum burial. These values are in accordance with the geodynamic setting of the basin. The influence of the Permo-Carboniferous volcanism on the palaeo-temperature distribution was overwhelmed by the subsequent deep burial. During Permian times, between 1800 and 3000 m of Permo-Carboniferous sediments were eroded. Different sedimentation and erosion histories are characteristic for anticlines and synclines, respectively.  相似文献   

15.
Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.  相似文献   

16.
This paper presents data and preliminary interpretations on the diagenesis of Early Paleozoic continental margin deposits along a traverse of the Quebec Appalachians near Quebec City, Canada. Regional variations in diagenesis were studied using the thermal maturation of organic matter in shales (reflectance measured on asphaltic bitumen, 105 samples) and illite crystallinity (330 samples). These revealed a regional southeastward increase in grade from the late middle and late stage of diagenesis to epimetamorphism, which is reflected in the distinction of four zones: Zone I representing the late middle diagenetic stage has a mean reflectance in oil (R0) between 1.0 and 1.5% and illite crystallinity between 5.5 and 8.0 mm. Zone II (late diagenetic stage) is characterized by R0=1.5–2.6% and illite crystallinity between 3.5 and 5.5 mm. Anomalously poor illite crystallinities in Zone II (i. e. 5.5 to 8.0 mm) were obtained for black shales, in which improvement of crystallinity lags behind red and green shales. Zone II is subdivided into subzones IIA and IIB. In the former, reflectance and illite crystallinity increase, within individual nappes, as a function of age or depth of burial. In the latter no such dependence is observed, instead diagenetic grade increases regionally in a southeastward direction as it does in zones III and IV. Zone III represents the anchizone in which observed reflectance values R0 range from 2.6 to 4.0% and illite crystallinities from 2.0 to 3.1 mm. In Zone IV (epizone) illite crystallinity is less than 2.0 mm (In terms of reflectance the anchi-zone/epizone boundary was not defined). Zones I and IIA are anomalous in that lower tectonic units are diagenetically less altered than higher tectonic units: R0 varies from 1.71 to 2.30% for the highest tectonic unit (Cambrian Chaudière Nappe), 1.53 to 1.90% (Cambro-Ordovician Bacchus Nappe) and 1.08 to 1.46% (Lower Ordovician Pointe-de-Lévy Nappe) for the middle tectonic units, and 1.01 to 1.15% for the lowest tectonic unit (Middle Ordovician Quebec Promotory Nappe). Thermal maturation and mineral diagenesis in zone IIA are probably due solely to sedimentary burial at the original site of deposition (by an estimated 6 to 7 km of younger sediments) because in this zone the highest diagenetic grade occurs in the highest tectonic unit. Diagenesis in the nappes of zone I probably required additional tectonic burial by the higher nappes because original sedimentary thicknesses that once overlay these Lower and Middle Ordovician rocks appear insufficient to have caused the observed degree of diagenesis. Diagenesis in zone IIA, therefore, was most likely formed entirely before orogenesis; in zone I it is probably partly pre-orogenic in origin and has been transported during nappe-movement. In contrast, diagenesis and metamorphism in zones IIB to IV are interpreted as related to regional synorogenic heating in conjunction with the Taconic orogeny. Thermal maturation levels in zone I indicate that the rocks have not yet passed the “oil window” which is of interest for petroleum exploration in Quebec. An extended English version of this paper is in preparation for the Bulletin of Canadian Petroleum Geology (Ogunyomi et al., ms.).  相似文献   

17.
Thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) analyses were carried out on two sets of isolated kerogens covering a wide maturity range from low mature (0.46% Ro) through the end of oil and gas generation (maximum Ro = 5.32%). Data onweight percent and Tmax for evolution of methane, volatile tars, ethylene, SO2, NH3, CO2, and CO are reported. The Tmax of methane shows the most consistent response to increasing maturation in both sets of samples. Results are comparable to those of whole rocks from an Alaskan North Slope well analyzed previously. The collective data for both whole rocks and isolated kerogens shows a generally linear correlation between %Ro and Tmax of methane, with the exception of Ro of about 2.0% where a dip in the curve occurs. The slope of the correlation line was steeper for the predominantly terrigenous Wilcox kerogen than for more marine Colorado kerogen or for the Alaskan North Slope whole rock samples, probably reflecting differences in the chemical nature of various kerogen sets, which is also reflected by differences in the shapes of the pyrolysis curves of SO2, CO2, CO, H2O, and ethylene. These preliminary data indicate that Tmax of methane is a good maturation indicator for whole rocks and isolated kerogens up to an Ro of about 4%, which includes all of the wet gas and a considerable portion of the dry gas generation zones. This correlation was also observed for samples containing migrated bitumen, where it was not possible to obtain a reliable Tmax for the volatile tar (S2) peak. The more terrigenous Wilcox kerogens also showed a good correlation of the Tmax of ethylene with %Ro. Tmax of ammonia evolution did not correlate with maturity and occurred 100–200°C lower than previously found for whole rocks, consistent with a whole-rock source of pyrolytic ammonia for Alaskan whole rock samples. HI and OI indices were calculated in several ways and plotted to reflect kerogen type as well as both the residual oil and gas generation potential. The ratio of pyrolyzable to combustible sulfur (evolved as SO2) was independent of maturity and showed a clear difference between the more terrigenous Wilcox kerogens and the more marine Colorado kerogens.  相似文献   

18.
Immature vitrinite samples from a Miocene lignite seam of western Germany (H/C = 1.14, O/C = 0.41) and alginite concentrates from a Tasmanite deposit of Australia (H/C = 1.60, O/C = 0.10) were pyrolyzed in a stream of argon at heating rates of 0.1 and 2.0°C/min up to temperatures varying from 200 to 670°C. The solid maceral residues were subjected to elemental and microscopical analysis and studied by IR and 13C CP/MAS NMR spectroscopy with respect to structural modifications.The maximum pyrolytic weight loss amounts to 60% of the initial organic matter in the case of vitrinite and to 85% for alginite, the onset of degradation reactions being shifted to higher temperatures with increasing rate of heating. Both infrared and NMR spectra of the vitrinite samples indicate a rapid decomposition of the cellulose component upon heating whereas lignin related structures such as aromatic ether linkages remain remarkably stable. The main hydrocarbon release from vitrinite occurs at very early evolution stages (Tmax = 296°C, Rm = 0.20% at 0.1°C/min; Tmax = 337°C, Rm = 0.23 at 2.0°C/min). Hydrocarbon generation from alginite requires higher temperatures (Tmax = 388 and 438°C) and is completed within a distinctly narrower temperature range.The pronounced increase of vitrinite reflectance between 350 and 670°C seems to be associated with a rather time-consuming reorganization of the residual organic material. The concomitant growth of polyaromatic units is illustrated by the increasing intensity ratio of the aromatic ring stretching vibration bands at 1600 and 1500 cm−1. These reactions are moreover marked by increasing loss of phenolic oxygen and by increasing conversion of aliphatic carbon into fixed aromatic carbon.  相似文献   

19.
Basin modelling has been used to improve understanding of the origin and temporal evolution of coal seam gas in the Hunter Coalfield of the Sydney Basin. Burial history models were produced based on data from seven boreholes located in the southern, eastern, central and western areas of the coalfield. Mean random vitrinite reflectance (Rv,r) data, derived from measurements of mean maximum reflectance (Rv,max), were used for calibration of the models. A qualitative sensitivity analysis of one model shows that varying the paleoheat flow has a greater influence on calculated Rv,r than varying the eroded overburden thickness.

The differences between the constructed models are significant enough to provide plausible explanations for regional gas distribution in the Hunter Coalfield. Coals in the south of the coalfield appear to have the greatest potential for thermogenic gas generation. Modelling has shown that areas that have low gas contents and decreased permeability have been uplifted more, and buried less, compared with areas that have high gas contents. Burial history modelling shows noticeable variations in the extent of burial and uplift, and, consequently, in thermal maturities and potential for thermogenic gas generation; together with the assessment of other coal and gas property data, it appears that present-day gas contents may partially reflect coal ranks and adsorption capacities, with late-stage biogenic gas generation replenishing CH4 volumes that were lost following uplift during the Late Cretaceous.  相似文献   

20.
Van Keer  I.  Ondrak  R.  Muchez  Ph.  Bayer  U.  Dusar  M.  Viaene  W. 《Geologie en Mijnbouw》1997,76(4):301-311
A 1D-modelling program has been applied to reconstruct the burial and thermal histories of two exploration boreholes, KB172 and KB174, located in the Campine Basin. The results show differences in geological histories. The coalification of the Westphalian A and B strata in KB174 (0.66–0.98% Ro) was pre-Permian. Calculated maximum temperatures, based on borehole data and vitrinite reflectance, regional thicknesses and a heat flow of 84 mW/m2 during the Late Westphalian, range from 110 °C at the top to 175 °C at the bottom of the Westphalian cored in this borehole. The high coalification (0.85–1.30% Ro) of the Westphalian C and D strata in KB172 could be the result of the deposition of 2500 m of Upper Permian to Middle Jurassic sediments in combination with elevated heat flows (71–80 mW/m2). Two coalification periods, i.e. Late Westphalian and Middle Jurassic, are suggested for this borehole. The simulated maximum temperatures range from 130 °C at the top to 175 °C at the bottom of the investigated Westphalian C and D. The differences in the burial and thermal histories of both boreholes can be related to the activity of the transversal Donderslag Fault, a major structural element in the Campine coalfield, and the Roer Valley Graben.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号