首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutsuki Aoya 《Island Arc》2002,11(2):91-110
Abstract   Eclogite-bearing units in the Sambagawa Metamorphic Belt have long been considered tectonic blocks that have disparate tectonic and metamorphic histories that are distinct from each other and from the major non-eclogitic Sambagawa schists. However, recent studies have shown that eclogite facies metamorphism of the Seba eclogite unit is related to the subduction event that caused the metamorphism of the non-eclogitic Sambagawa schist. New structural data further show that the Seba eclogite unit, which appears to be isolated from the other eclogite units, is in fact in structural continuity with them, occupying the highest structural levels in the Sambagawa Belt. This suggests that eclogitic metamorphism of the other eclogite units is also related to the Sambagawa subduction event. It is, therefore, possible that all eclogite units in the Sambagawa Belt constitute a single coherent unit, the eclogite nappe, members of which underwent the same eclogitic metamorphism related to the Sambagawa subduction event.  相似文献   

2.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

3.
Yui  Kouketsu  Masaki  Enami 《Island Arc》2010,19(1):165-176
Aragonite and omphacite-bearing metapelite occurs in the albite–biotite zone of the Togu (Tohgu) area, Besshi region, Sambagawa metamorphic belt, central Shikoku, Japan. This metapelite consists of alternating graphite-rich and graphite-poor layers that contain garnet, phengite, chlorite, epidote, titanite, calcite, albite, and quartz. A graphite-poor layer contains a 1.5-cm ivory-colored lens that mainly consists of phengite, calcite, albite, and garnet. Aragonite, omphacite, and paragonite occur as inclusions in the garnet of the ivory lens. The aragonite has a composition that is close to the CaCO3 end-member: the FeCO3 and MnCO3 components are both less than 0.3 mol% and the SrCO3 component is about 1 mol%. The aragonite + omphacite + quartz assemblage in garnet indicates equilibrium conditions of P  > 1.1–1.3 GPa and T  = 430–550°C. Quartz grains sealed in garnet of the aragonite and omphacite-bearing sample and other metapelites in the Togu area preserve a high residual pressure that is equivalent to the Sambagawa eclogite samples. These facts suggest that: (i) the Togu area experienced eclogite facies metamorphism; and (ii) thus, eclogite facies metamorphism covered the Sambagawa belt more extensively than previously recognized.  相似文献   

4.
C. W. Oh  & J. G. Liou 《Island Arc》1998,7(1-2):36-51
The petrogenetic grid between the eclogite and other high-pressure/temperature (P/T) metamorphic facies in a basaltic system is constructed by considering barroisite as one of the important phases in high-P/T metamorphism and by using previous petrological data combined with Schreinemakers' analysis and slope calculation. In the constructed petrogenetic grid, the eclogite facies is bounded by the blueschist and epidote–amphibolite facies with negative-slope reactions at lower temperatures (450–550 °C) and by the epidote–amphibolite, amphibolite and granulite facies with positive-slope reactions at higher temperatures (> 550–600 °C). The eclogite facies does not contact the greenschist facies, and the lowest P condition for the eclogite facies exists at the boundary between the eclogite and epidote–amphibolite facies. The temperature range of the epidote–amphibolite facies increases with increasing pressure until 8–11 kbar and then decreases up to 13–15 kbar. Compared to boundaries of other facies, boundaries of the eclogite facies may have wider P–T ranges. The boundary between the blueschist and eclogite facies occurs over a large temperature range from 450 to 620 ± 30 °C, and the transitions between the eclogite and amphibolite or high-pressure granulite facies occur over a pressure range in excess of 6–10 kbar.  相似文献   

5.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

6.
High-pressure metamorphic rocks are exposed in Karangsambung area of central Java, Indonesia. They form part of a Cretaceous subduction complex (Luk–Ulo Complex) with fault-bounded slices of shale, sandstone, chert, basalt, limestone, conglomerate and ultrabasic rocks. The most abundant metamorphic rock type are pelitic schists, which have yielded late Early Cretaceous K–Ar ages. Small amounts of eclogite, glaucophane rock, garnet–amphibolite and jadeite–quartz–glaucophane rock occur as tectonic blocks in sheared serpentinite. Using the jadeite–garnet–glaucophane–phengite–quartz equilibrium, peak pressure and temperature of the jadeite–quartz–glaucophane rock are P  = 22 ± 2 kbar and T  = 530 ± 40 °C. The estimated P–T conditions indicate that the rock was subducted to ca 80 km depth, and that the overall geothermal gradient was ∼ 7.0 °C/km. This rock type is interpreted to have been generated by the metamorphism of cold oceanic lithosphere subducted to upper mantle depths. The exhumation from the upper mantle to lower or middle crustal depths can be explained by buoyancy forces. The tectonic block is interpreted to be combined with the quartz–mica schists at lower or middle crustal depths.  相似文献   

7.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

8.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   

9.
Toshio Nozaka 《Island Arc》1999,8(2):154-167
Blueschist tectonic blocks occur in serpentinites at Mochimaru, Hiroshima Prefecture, Southwest Japan. They contain alkali amphibole coexisting with pumpellyite and chlorite, with or without calcic amphibole. Textural and chemical analyses reveal that the blueschists, together with other mafic schists, have similar metamorphic history. After their capture by serpentinites and before the emplacement of the serpentinites into the present geological position, the tectonic blocks were subjected to high P/T metamorphism around the boundary between the blueschist and pumpellyite–actinolite facies. The amphiboles formed by this metamorphism change from tremolite through glaucophane to ferroglaucophane with increasing FeO/MgO of whole rock compositions. The P–T conditions are estimated to be within 200–350°C and 5–7 kbar. These are higher P/T conditions than those of the regional metamorphism of Southwest Japan. The difference in the P–T conditions implies differences in tectonic situation and timing of metamorphism between the blocks and regional metamorphic rocks. In addition, the high P/T metamorphism of the tectonic blocks probably occurred in more reducing environments than the regional metamorphism. Because the ferric/ferrous iron ratios of the tectonic blocks are within a narrow range, it is stressed that oxygen fugacity was externally buffered during the high P/T metamorphism by the serpentinization process of the host ultramafic rocks. The reducing effect of serpentinization is common throughout the high P/T metamorphic terranes of Southwest Japan.  相似文献   

10.
Hideki Masago 《Island Arc》2000,9(3):358-378
Abstract In the Barchi–Kol area, located at the westernmost part of the Kokchetav ultrahigh pressure (UHP) to high-pressure (HP) massif, northern Kazakhstan, metabasites from the epidote amphibolite (EA) facies to the coesite eclogite (CEC) facies are exposed. Based on the equilibrium mineral assemblages, the Barchi–Kol area is divided into four zones: A, B, C and D. Zone A is characterized by the assemblage: epidote + hornblende + plagioclase + quartz, with minor garnet. Zone B is characterized by the assemblage: garnet + hornblende + plagioclase + quartz + zoisite. Zone C is defined by the appearance of sodic–augite, with typical assemblage: garnet + sodic–augite + tschermakite–pargasite + quartz ± plagioclase ± epidote/clinozoisite. Zone D is characterized by the typical eclogite assemblage: garnet + omphacite + quartz + rutile, with minor phengite and zoisite. Inclusions of quartz pseudomorph after coesite were identified in several samples of zone D. Chemical compositions of rock-forming minerals of each zone were analyzed and reactions between each zone were estimated. Metamorphic P-T conditions of each zone were estimated using several geothermobarometers as 8.6 ± 0.5 kbar, 500 ± 30 °C for zone A; 11.7 ± 0.5 kbar, 700 ± 30 °C for zone B; 12–14 kbar, 700–815 °C for zone C; and 27–40 kbar, 700–825 °C for zone D.  相似文献   

11.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

12.
Nobuo  Sakakibara  Ikuo  Hara  Kenji  Kanai  Kenji  Kaikiri  Tugio  Shiota  Kei  Hide Peter  Paulitsch 《Island Arc》1992,1(1):186-197
Abstract Quartz c-axis fabrics of the Sambagawa schists produced along a late Mesozoic convergent plate margin were analysed so that their tectono-metamorphic history could be clarified. It has been noted by many authors that quartz fabrics produced by earlier phase deformation are easily modified by strain increment during later phase deformation. This paper attempts to elucidate the high-temperature phases of prograde metamorphism (Sim-Bim phase) and of retrograde metamorphism (Sb1 phase and Sb2−1 phase) from quartz grains included in garnet and plagioclase porphyroblasts. Quartz c-axis fabrics for all these phases are explained in terms of a type I crossed girdle, without (only rarely with) higher concentration in the principal axis of strain Y (X>Y>Z), that must have been produced by the activity of a dominant slip system such as rhomb and basal. As a result, the plastic deformation of quartz, which was responsible for the formation of the type I crossed girdle, occurred even under temperatures greater than 500°C and pressures a little greater than 10–11 kb, which correspond to the physical condition of the Sim-Bim phase. It has been assumed that a high strain rate (and/or low H2O content) caused rhomb and basal to be active as dominant slip systems in the subduction zone related to the formation of the Sambagawa schists even under high temperatures (> 500°C).  相似文献   

13.
Shohei  Banno 《Island Arc》2004,13(4):475-483
Abstract   Petrological study of the Sanbagawa schists was initiated by B. Koto (1856–1935) and extensive petrographic works were performed by J. Suzuki (1896–1970) and Y. Horikosi (1905–1992), who studied in the Besshi area of central Shikoku. Petrological work based on the mineral facies concept of P. Eskola (1883–1964) was initiated in Japan in the 1950s by A. Miyashiro on the low pressure/temperature (P/T) Abukuma complex, and then by Y. Seki and S. Banno on the high P/T Sanbagawa Metamorphic Belt. A unique inverted thermal structure was established by researchers in the 1970s. Therefore, mainly geological and petrographic features of the Sanbagawa Belt were established by the 1990s, and contemporary researchers are now testing the classical images using the new and quantitative viewpoints of geochronological, structural, tectonic, and thermal modeling.  相似文献   

14.
Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang   总被引:3,自引:0,他引:3  
According to the field occurrences and petrological study, the low temperature eclogite facies metamorphic rocks in Western Tianshan of Xinjiang can be divided into five types: (i) massive glaucophane-epidote eclogites and glaucophane-paragonite eclogites; (ii) schistose or gneissic mica eclogites; (iii) banded calcite eclogites; (iv) pillow glaucophane eclogites; (v) garnet-omphacite quartzites. Their eclogite facies metamorphism has undergone four stages of evolution: (i) pre-peak lawsonite-blueschist facies stage,T = 350–4000°C,P = 0.7–0.9 GPa; (ii) peak eclogite facies stage,T = 530 ± 20°C,P = 1.6–1.9 GPa; (iii) retrograde epidote-blueschist facies stage, T=500–530°C,P = 0.9–1.2 GPa and (iv) retrograde blueschist-greenschist facies stage,T= 450–550°C,P= 0.7–0.8 GPa. The metamorphic PT path of Western Tianshan eclogites is characterized by clockwise ITD resulting from the subduction of Tarim plate northward to Yili-Central Tianshan plate followed by fast uplift to the surface. But there were at least two stages of blueschist facies retrograde metamorphism overprinted during their uplift.  相似文献   

15.
W. Cui  X. Wang 《Island Arc》1995,4(4):347-361
Abstract According to field occurrence and P-T condition, eclogites of southern Henan and northern Hubei Provinces can be divided into two types: medium temperature (MT) and low temperature (LT) eclogites. MT eclogite occurs as layers or lenticular bodies within migmatized gneiss of the Dabie Group. This study is the first to report an occurrence of the assemblages coesite and kyanite + talc in this area. Garnet exhibits a distinct prograde compositional zoning and has mineral inclusions with rotational textures indicating syntectonic growth. Five evolutionary stages are outlined. (1) Pre-eclogite stage, determined by the inclusions of barroisite + zoisite + quartz in the cores of zoned garnets. (2) Eclogite stage, characterized by garnet + omphacite + kyanite ± talc + coesite + rutile, represents the peak metamorphism. The peak conditions are estimated to be T = 600-700°C, P >27 kb. (3) Glaucophane stage, without an appearance of plagioclase, is assigned to a transitional stage. Blades of glaucophane form rims around garnet grains as a result of the reaction talc + jadeite = glaucophane. This marks the beginning of retrograde metamorphism. (4) Symplectite stage, where eclogitic minerals break down, and Amp + Pl symplectite develops around garnet or omphacite; (5) Later retrograde stage is represented by epidote-amphibolite assemblages. Low temperature eclogite appears as blocks in the Qijiaoshan Formation (part of the Susong Group). Four stages can be identified: (1) Pre-eclogite stage, amphibole + epidote + sphene inclusions occur in garnet core; (2) Eclogite stage, consists of garnet + omphacite + rutile + quartz + phengite + glaucophane + zoisite. The peak conditions are T = 490-560°C, P <15 kb; (3) Symplectitic stage, is characterized by the breakdown of eclogitic minerals; (4) Greenschist facies stage, is recorded by a greenschist facies assemblage. The difference between the two types of eclogites suggests contrasting processes. A model is proposed whereby partial melting of continental crust and the emplacement of tonalite occurs during the exhumation of ultrahigh-pressure eclogite terrain.  相似文献   

16.
Abstract The Maksyutov Complex, situated in the southern Ural Mountains of Russia, is the first location where quartz aggregates within garnets exhibiting radial fractures were identified as coesite pseudomorphs (Chesnokov & Popov 1965). The complex consists of two tectonic units: a structurally lower eclogite-bearing schist unit and an overlying meta-ophiolite unit. Both units show evidence for multiple stages of metamorphism and deformation. The high-pressure metamorphism of the eclogite-bearing schist unit, discussed in this report, is suspected to be related to a collision between the Russian platform and a fragment of the Siberian continent during the early Cambrian. At least three stages of metamorphism (M1-3) and two stages of deformation (S1 and S2) were observed in thin sections: M1) garnet (Alm55-60, Prp22-28, Grs16-20) + omphacite (Jd46-56) + phengite (Si ≅ 3.5) + rutile; M2) garnet + glaucophane ± lawsonite + white mica; and M3) epidote + chlorite ± albite ± actinolite + white mica. Observed mineral parageneses define a retrograde P-T path for the eclogite. Mineral assemblages within the most representative eclogite from the lower unit of the Maksyutov Complex indicate minimum peak pressures of 15 kbar at temperatures of approximately 600°C. If the presence of coesite pseudomorph is confirmed, the peak ultrahigh-pressure metamorphism may be as high as 27 kbar at 615°C.  相似文献   

17.
Eclogite, a high-pressure–temperature metamorphic rock characterized by garnet + omphacite, is usually considered to be a product of regional metamorphism under a low geothermal gradient. However, in the Sebadani area of the Sambagawa metamorphic belt most petrologists agree that the eclogite formed by localized contact metamorphism due to intrusion of a body in the solid-state (the Sebadani mass). This process is termed ‘high-pressure contact metamorphism'. However, geological considerations suggest that the effect of such a process would be limited, firstly because the speed of emplacement for solid-state material will generally be much lower than that for magma and secondly because in the solid-state there is no heat of fusion in the body available for thermal effects. Thermal modelling of a solid-state intrusion, based on the heat conduction equation, allows the relationship between size of intrusion, velocity of emplacement and thermal effects to be calculated. Two cases have been considered: (1) a hot model, where none of the heat conducted into the surroundings is lost during the rise of the body; and (2) a cold model where all the heat conducted into the surroundings is lost. These models bracket possible thermal histories of the body. Calculations suggest that in the Sebadani region, production of the observed metamorphic features requires unrealistically high velocity and a much larger intruded body than is observed. These conclusions suggest that it is unlikely that eclogite in the Sebadani area was formed by high-pressure contact metamorphism, but rather that it represents the highest-grade part of the regional Sambagawa metamorphism.  相似文献   

18.
Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps   总被引:10,自引:0,他引:10  
Garnet lherzolite at Cima di Gagnone has chemical and mineralogical properties similar to those of other garnet lherzolites in the lower Pennine Adula/Cima Lunga Nappe (Alpe Arami, Monte Duria). The Cima di Gagnone occurrence encloses mafic boudins that belong to an eclogite-metarodingite suite common in the numerous neighboring ultramafic lenses. The ultramafic rocks at Cima di Gagnone, including the garnet lherzolite, are interpreted as tectonic fragments of an originally larger lherzolite body that underwent at least partial serpentinization prior to regional metamorphism. This lherzolite body cycled through at least three metamorphic facies: greenschist or blue-schist (as antigorite serpentinite) → eclogite (as garnet lherzolite), pre-Alpine or early Alpine → amphibolite facies (as chlorite-enstatite-tremolite peridotite), Lepontine metamorphism. Relics of titanoclinohumite in the garnet peridotite, as also recorded by Möckel near Alpe Arami, are consistent with this metamorphic history, since they indicate a possible connection with Pennine antigorite serpentinites, e.g., Liguria, Piedmont, Zermatt-Saas, Malenco, Pustertal, all of which have widespread titanoclinohumite belonging to the antigorite paragenesis. Estimated pressures in excess of 20 kbar and temperatures of 800°±50°C for the garnet lherzolite assemblage are not inconsistent with conditions inferred for Gagnone and Arami eclogites. These conditions could have been reached during deep subduction zone metamorphism. It is shown by calculation that the effects of Fe and Cr on the location of the garnet lherzolite/spinel lherzolite phase boundary largely counter-balance each other.  相似文献   

19.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

20.
Abstract High‐ to ultrahigh‐pressure metamorphic (HP–UHPM) rocks crop out over 150 km along an east–west axis in the Kokchetav Massif of northern Kazakhstan. They are disposed within the Massif as a 2 km thick, subhorizontal pile of sheet‐like nappes, predominantly composed of interlayered pelitic and psammitic schists and gneisses, amphibolite and orthogneiss, with discontinuous boudins and lenses of eclogite, dolomitic marble, whiteschist and garnet pyroxenite. On the basis of predominating lithologies, we subdivided the nappe group into four north‐dipping, fault‐bounded orogen‐parallel units (I–IV, from base to top). Constituent metabasic rocks exhibit a systematic progression of metamorphic grades, from high‐pressure amphibolite through quartz–eclogite and coesite–eclogite to diamond–eclogite facies. Coesite, diamond and other mineral inclusions within zircon offer the best means by which to clarify the regional extent of UHPM, as they are effectively sequestered from the effects of fluids during retrogression. Inclusion distribution and conventional geothermobarometric determinations demonstrate that the highest grade metamorphic rocks (Unit II: T = 780–1000°C, P = 37–60 kbar) are restricted to a medial position within the nappe group, and metamorphic grade decreases towards both the top (Unit III: T = 730–750°C, P = 11–14 kbar; Unit IV: T = 530°C, P = 7.5–9 kbar) and bottom (Unit I: T = 570–680°C; P = 7–13.5 kbar). Metamorphic zonal boundaries and internal structural fabrics are subhorizontal, and the latter exhibit opposing senses of shear at the bottom (top‐to‐the‐north) and top (top‐to‐the‐south) of the pile. The orogen‐scale architecture of the massif is sandwich‐like, with the HP–UHPM nappe group juxtaposed across large‐scale subhorizontal faults, against underlying low P–T metapelites (Daulet Suite) at the base, and overlying feebly metamorphosed clastic and carbonate rocks (Unit V). The available structural and petrologic data strongly suggest that the HP–UHPM rocks were extruded as a sequence of thin sheets, from a root zone in the south toward the foreland in the north, and juxtaposed into the adjacent lower‐grade units at shallow crustal levels of around 10 km. The nappe pile suffered considerable differential internal displacements, as the 2 km thick sequence contains rocks exhumed from depths of up to 200 km in the core, and around 30–40 km at the margins. Consequently, wedge extrusion, perhaps triggered by slab‐breakoff, is the most likely tectonic mechanism to exhume the Kokchetav HP–UHPM rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号