首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Full Stokes polarimetry is obtained using the National Solar Observatory Vacuum Tower Telescope at Sacramento Peak while observing the magnetically sensitive infrared Fei line at wavelength of 1.56. A technique is described which makes use of the high magnetic resolution in this spectral range to remove instrumental polarization from observed StokesQ, U, andV line profiles.Supported under a USAF/AFOSR research initiative.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   

2.
We discuss a near-infrared (NIR) narrow-band tunable birefringent filter system newly developed by the Big Bear Solar Observatory (BBSO). This is one of the first narrow-bandpass NIR filter systems working at 1.56 μm which is used for the observation of the deepest solar photosphere. Four stages of calcite were used to obtain a bandpass of 2.5 Å along with a free spectral range (FSR) of 40 Å. Some unique techniques were implemented in the design, including liquid crystal variable retarders (LCVRs) to tune the bandpass in a range of ±100 Å, a wide field configuration to provide up to 2° incident angle, and oil-free structure to make it more compact and handy. After performing calibration and characteristic evaluation at the Evans Facility of the National Solar Observatory at Sacramento Peak (NSO/SP), a series of high-resolution filtergrams and imaging polarimetry observations were carried out with the Dunn Solar Telescope of NSO/SP and the 65-cm telescope of BBSO, in conjunction with the high-order adaptive optics system and the Fabry–Pérot Interferometer (FPI). In this paper, we describe the optical design and discuss the calibration method. Preliminary observations show that it is capable of serving as either a stand-alone narrow-band filter for NIR filtergram observations or an order-sorting filter of a FPI applied to NIR two-dimensional imaging spectro-polarimetry.  相似文献   

3.
F. Cavallini 《Solar physics》2006,236(2):415-439
A new instrument for solar bi-dimensional spectroscopy, the Interferometric BIdimensional Spectrometer (IBIS), has been successfully installed at the Dunn Solar Telescope of the National Solar Observatory (USA-NM) in June 2003. This instrument is essentially composed of a series of two Fabry-Perot interferometers and a set of narrow-band interference filters, used in a classic mount and in axial-mode. It has been designed to take monochromatic images of the solar surface with high spectral (R ≥ 200 000), spatial ≃ 0.2″), and temporal resolution (several frames s−1). IBIS has a circular field of view, 80″ in diameter and, with suitable interference filters, it can be used in the wavelength range 580 – 860 nm. The wavelength stability of the instrumental profile is very high, the maximum drift in 10 hours amounting to ≃10 m s−1. In this paper the criteria used in the design and the expected instrumental characteristics are described.  相似文献   

4.
We investigate the accuracy to which we can retrieve the solar photospheric magnetic field vector using the Helioseismic and Magnetic Imager (HMI) that will fly onboard of the Solar Dynamics Observatory by inverting simulated HMI profiles. The simulated profiles realistically take into account the effects of the photon noise, limited spectral resolution, instrumental polarization modulation, solar p modes, and temporal averaging. The accuracy of the determination of the magnetic field vector is studied by considering the different operational modes of the instrument.  相似文献   

5.
The High Altitude Observatory Coronagraph/Polarimeter, to be flown on the National Aeronautics and Space Administration's Solar Maximum Mission satellite, is designed to produce images of the solar corona in seven wavelength bands in the visible spectral range. The spectral bands have been chosen to specifically exclude or include chromospheric spectral lines, so as to allow discrimination between ejecta at high (coronal) and low (chromospheric) temperatures, respectively. In addition, the instrument features spectral filters designed to permit an accurate color separation of the F and K coronal components, and a narrow band (5.5 Å) filter to observe the radiance and polarization of the Fe xiv 5303 Å line. The effective system resolution is better than 10 arc sec and the instrument images a selected quadrant (or smaller field) on an SEC vidicon detector. The total height range that may be recorded encompasses 1.6 to more than 6.0R (from Sun center). The instrument is pointed independently of the SMM spacecraft, and its functions are controlled through the use of a program resident within the onboard spacecraft computer. Major experimental goals include: (a) Observation of the role of the corona in the flare process and of the ejecta from the flare site and the overlying corona; (b) the study of the direction of magnetic fields in stable coronal forms, and, perhaps, ejecta; and (c) examination of the evolution of the solar corona near the period of solar maximum activity.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper we analyze the distribution of magnetic strength ratios (MSR) across the solar disk using magnetograms in different spectral lines from the same observatory (Mount Wilson Observatory (MWO) and Sayan Observatory (SO)), magnetograms in the same line from different observatories (MWO, SO, Wilcox Solar Observatory (WSO)), and in different spectral lines from different observatories (the three observatories mentioned above, the National Solar Observatory/Kitt Peak (KP) and Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SoHO)). We find peculiarities in some combinations of data sets. Besides the expected MSR center-to-limb variations, there is an equator-to-pole asymmetry, especially in the near-limb areas. Therefore, it is generally necessary to use 2D matrices of correction coefficients to reduce one kind of observation into another one.  相似文献   

8.
The NASA/NSO Spectromagnetograph is a new focal plane instrument for the National Solar Observatory/Kitt Peak Vacuum Telescope which features real-time digital analysis of long-slit spectra formed on a two-dimensional CCD detector. The instrument is placed at an exit port of a Littrow spectrograph and uses an existing modulator of circular polarization. The new instrument replaces the 512-channel Diode Array Magnetograph first used in 1973. Commercial video processing boards are used to digitize the spectral images at video rates and to separate, accumulate, and buffer the spectra in the two polarization states. An attached processor removes fixed-pattern bias and gain from the spectra in cadence with spatial scanning of the image across the entrance slit. The data control computer performs position and width analysis of the line profiles as they are acquired and records line-of-sight magnetic field, Doppler shift, and other computed parameters. The observer controls the instrument through windowed processes on a data control console using a keyboard and mouse. Early observations made with the spectromagnetograph are presented and plans for future development are discussed.The National Solar Observatory is a Division of the National Optical Astronomy Observatories which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

9.
The radial component Br of magnetic field was calculated in the potential approximation and the synoptic maps of Br for several heights in the Solar atmosphere were constructed based on observations of the photospheric magnetic field made on the old magnetograph at the US Kitt Peak National Observatory and on the new SOLIS magnetograph at the US National Solar Observatory for cycle 23 (the years 1997–2009). Parameters of large-scale structures of magnetic field with positive and negative polarities were determined at seven heights in the Sun’s atmosphere—from the photosphere (H = Ro) to H = 2.5 Ro (Ro is the Solar radius). The processes of polar reversal for polar fields and changing of the sector structure of the field at middle latitudes were observed. Characteristic lifespans and rotations were ascertained. The general picture of variations of the large-scale solar magnetic field during cycle 23 was put forward. Two types of boundaries of large magnetic structures at various heights were identified.  相似文献   

10.
A list of solar spectral lines in the wavelength 4300–6700 exhibiting large Stokes V amplitudes in observed spectra of active region plages and the quiet network is presented.Visiting astronomer at National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

11.
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen’s University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k × 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 – 15 e s−1 pixel−1), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.  相似文献   

12.
13.
针对云南天文台太阳光谱仪, 建立了光谱仪分光流量的计算机模型, 通过观测实验检验了该模型的可靠性。利用此模型我们还计算了该仪器的分光流量, 并在此基础上, 对探测器的选型进行了讨论。  相似文献   

14.
A high resolution spectrum of a sunspot umbra is used for identification of rotational lines due to (0, 0) band of the A 2Π–X 2Σ+ system and (0, 0), (1, 1), and (2, 2) bands of the B 2Σ+X 2Σ+ system of the molecule SrF. The published sunspot umbral spectrum obtained with Fourier Transform Spectrometer and solar telescope of National Solar Observatory/National Optical Astronomy Observatory at Kitt Peak was used for the study. The new identification of more than 200 SrF lines in the umbral spectrum confirms that this molecule accounts for the majority of lines in the spectral range 15050 to 15360 cm−1 and 17240 to 17300 cm−1. Equivalent widths have been measured for well-resolved lines of these bands and the effective rotational temperatures have been estimated for which the presence is confirmed.  相似文献   

15.
Berger  T.E.  Lites  B.W. 《Solar physics》2002,208(2):181-210
Cotemporal Fei 630.2 nm magnetograms from the Solar Optical Universal Polarimeter (SOUP) filter and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. The SOUP instrument produces Stokes V/I `filter magnetograms' with wide field of view and spatial resolution below 0.5 arc sec in good seeing, but low spectral resolution. In contrast, the ASP uses high spectral resolution to produce very high-precision vector magnetic field maps at spatial resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create an ASP `longitudinal magnetic flux-density map' with which to calibrate the less precise SOUP magnetograms. The magnetograms from each instrument are co-aligned with an accuracy of about 1 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate SOUP predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine the SOUP magnetogram linear calibration constant relative to ASP flux-density values. We compare three distinct methods of scaling the ASP and SOUP data to a common reference frame in order to explore filling factor effects. The recommended SOUP calibration constant is 17000 ± 550 Mx cm–2 per polarization percent in plage regions. We find a distinct polarity asymmetry in SOUP response relative to the ASP, apparently due to a spatial resolution effect in the ASP data: the smaller, less numerous, minority polarity structures in the plage region are preferentially blended with the majority polarity structures. The blending occurs to a lesser degree in the high-resolution SOUP magnetogram thus leading to an apparent increase in SOUP sensitivity to the minority polarity structures relative to the ASP. One implication of this effect is that in mixed polarity regions on the Sun, lower spatial resolution magnetograms may significantly underestimate minority polarity flux levels, thus leading to apparent flux imbalances in the data. *Visiting Astronomer, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
COR1 is the innermost coronagraph of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite aboard the twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The paired COR1 telescopes observe the white-light K-corona from 1.4 to 4 solar radii in a waveband 22.5 nm wide centered on the Hα line at 656 nm. An internal polarizer allows the measurement of both total and polarized brightness. The co-alignment of the two COR1 telescopes is derived from the star λ Aquarii for the Ahead spacecraft, and from an occultation of the Sun by the Moon for Behind. Observations of the planet Jupiter are used to establish absolute photometric calibrations for each telescope. The intercalibration of the two COR1 telescopes are compared using coronal mass ejection observations made early in the mission, when the spacecraft were close together. Comparisons are also made with the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) C2 and Mauna Loa Solar Observatory Mk4 coronagraphs.  相似文献   

17.
18.
For high resolution spectral observations of the Sun – particularly its chromosphere, we have developed a dual-band echelle spectrograph named Fast Imaging Solar Spectrograph (FISS), and installed it in a vertical optical table in the Coudé Lab of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. This instrument can cover any part of the visible and near-infrared spectrum, but it usually records the Hα band and the Ca ii 8542 Å band simultaneously using two CCD cameras, producing data well suited for the study of the structure and dynamics of the chromosphere and filaments/prominences. The instrument does imaging of high quality using a fast scan of the slit across the field of view with the aid of adaptive optics. We describe its design, specifics, and performance as well as data processing  相似文献   

19.
Summary The High Altitude Observatory attempts to carry out a balanced program of theoretical and experimental research in solar, solar-terrestrial, and stellar-related physics. The scientific efforts are carried out within a sectional structure including the major areas of Solar Atmosphere and Magnetic Fields, Coronal/Interplanetary Physics, and Solar Variability. As one division of a National Center, the Observatory attempts to provide leadership through operation and sponsorship of seminars on specialized topics and organization of workshops to exploit data collections. In addition to the examples given, the Observatory, under NASA sponsorship, has organized a workshop series on solar flares, a central theme of which was the interpretation of Skylab results. This effort has resulted in the publication of a volume Solar Flares, edited by P. Sturrock, Colorado Associated University Press, 1979. Through these efforts, and the participation of individual staff members on advisory committees and working groups within the national and international framework, the Observatory continues to play a role in the guidance of research in solar and related physics.  相似文献   

20.
在天文仪器的设计过程中存在有大量的数值计算,且大部分的数值问题是非线性的。如何有效的解决这些计算问题,保证设计工作的顺利进行,是每一个设计工作者关心的问题。文章结合云南天文台光谱筒的有限元分析过程,论述了如何采用有限元分析方法解决大型天文仪器机械设计数值计算问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号