首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of cracks on the elastic properties of an isotropic elastic solid is studied when the cracks are saturated with a soft fluid. A polynomial equation in effective Poisson's ratio is obtained, whose coefficients are functions of Poisson's ratio of the uncracked solid, crack density and saturating fluid parameter. Elastic and dynamical constants used in Blot's theory of wave propagation in poroelastic solids are modified for the introduction of cracks. The effects of cracks on the velocities of three types of waves are observed numerically. The frequency equation is derived for the propagation of Rayleigh-type surface waves in a saturated poroelastic half-space lying under a uniform layer of liquid. Dispersion curves for a particular model of oceanic crust containing cracks are plotted. The effects of variations in crack density and saturation on the phase and group velocity are also analysed.  相似文献   

2.
We report results from the Seismic Wide-Angle and Broadband Survey carried out over the Mid North Sea High. This paper focuses on integrating the information from a conventional deep multichannel reflection profile and a coincident wide-angle profile obtained by recording the same shots on a set of ocean bottom hydrophones (OBH). To achieve this integration, a new traveltime inversion scheme was developed (reported elsewhere) that was used to invert traveltime information from both the wide-angle OBH records and the reflection profile simultaneously. Results from the inversion were evaluated by producing synthetic seismograms from the final inversion model and comparing them with the observed wide-angle data, and an excellent match was obtained. It was possible to fine-tune velocities in less well-resolved parts of the model by considering the critical distance for the Moho reflection. The seismic velocity model was checked for compatibility with the gravity field, and used to migrate and depth-convert the reflection profile. The unreflective upper crust is characterized by a high velocity gradient, whilst the highly reflective lower crust is associated with a low velocity gradient. At the base of the crust there are several subhorizontal reflectors, a few kilometres apart in depth, and correlatable laterally for several tens of kilometres. These reflectors are interpreted as representing a strike section through northward-dipping reflectors at the base of the crust, identified on orthogonal profiles by Freeman et al. (1988) as being slivers of subducted and imbricated oceanic crust, relics of the mid-Palaeozoic Iapetus Ocean.  相似文献   

3.
Summary. The crustal structure beneath the Vema fracture zone and its flanking transverse ridge was determined from seismic refraction profiles along the fracture zone valley and across the ridge. Relatively normal oceanic crust, but with an upwarped seismic Moho, was found under the transverse ridge. We suggest that the transverse ridge represents a portion of tectonically uplifted crust without a major root or zone of serpentinite diapirism beneath it. A region of anomalous crust associated with the fracture zone itself extends about 20 km to either side of the central fault, gradually decreasing in thickness as the fracture zone is approached. There is evidence to suggest that the thinnest crust is found beneath the edges of the 20 km wide fracture zone valley. Under the fracture zone valley the crust is generally thinner than normal oceanic crust and is also highly anomalous in its velocity structure. Seismic layer 3 is absent, and the seismic velocities are lower than normal. The absence of layer 3 indicates that normal magmatic accretionary processes are considerably modified in the vicinity of the transform fault. The low velocities are probably caused by the accumulation of rubble and talus and by the extensive faulting and fracturing associated with the transform fault. This same fracturing allows water to penetrate through the crust, and the apparently somewhat thicker crust beneath the central part of the fracture zone valley may be explained by the resultant serpentinization having depressed the seismic Moho below its original depth.  相似文献   

4.
Transient electromagnetic responses in seafloor with triaxial anisotropy   总被引:2,自引:0,他引:2  
Electrical anisotropy of young oceanic crust at mid-ocean ridges is detectable by observation of the rate and geometry of the diffusion of electromagnetic fields. The anisotropy in electrical properties arises from the presence of conductive seawater in an interconnected network of mostly ridge-parallel cracks. In this paper, we first justify the choice of a triaxial model to represent young oceanic crust, with three distinct electrical conductivities in the vertical, strike and spreading directions. We then present an algorithm to calculate the transient electromagnetic responses generated by an electric dipole source over such a triaxially anisotropic seafloor. We show that if the transient passages are measured with three distinct electric dipole-dipole configurations, it is possible to discern all three unknown conductivities independently of each other.  相似文献   

5.
Synthetic seismograms are shown and discussed for the case of the receiver within the medium. Most of the discussion is on the reflectivity method with the receiver within the reflectivity zone, but results using the ray method are shown for comparison. Such synthetic seismograms can be used to interpret data from Oblique Seismic Experiments where shots generated on the surface up to large ranges are recorded in crustal boreholes.  相似文献   

6.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

7.
Summary. A long seismic refraction profile was carried out between southern Israel and Cyprus. The seismic energy was generated by 33 sea shots each of 0.8 t explosives and was recorded by land stations in Israel and Cyprus and by ocean bottom seismographs deployed along the profile.
The results showed that the continental crust of southern Israel thins towards the Mediterranean underneath a northward thickening sedimentary cover. Cyprus is underlain by a 35 km thick continental crust thinning south-wards and extending to Mt Eratosthenes. Between Mt Eratosthenes and the Israel continental shelf the crystalline crust is composed of high velocity (6.5 km s-1)material and is about 8 km thick. It is covered by 12–14 km of sediments and may represent a fossil oceanic crust.  相似文献   

8.
Seismic anisotropy — the state of the art: II   总被引:1,自引:0,他引:1  
Summary. The theory, causes, observations, and possible applications of seismic anisotropy in the Earth have developed considerably since the previous state of the art paper was published in 1977. The behaviour of waves in layered anisotropic media is now much better understood and the evidence for seismic anisotropy indicates that anisotropy is likely to be present throughout much of the crust and upper mantle. The top few hundred kilometres of the mantle appears to be anisotropic with the orientations aligned by the present or palaeo stress-field. The upper part of the crust is frequently anisotropic, probably due to cracks differentially aligned by the non-lithostatic stresses. The possibility of being able to monitor crack geometry by seismic techniques opens a wide range of applications in currently important activities.  相似文献   

9.
Summary. It is known that flow in the mantle can produce preferred orientation in olivine crystals with seismic anisotropy as a consequence. Flow in the subcrustal lithosphere is unlikely because of the high viscosity. Lenses of high temperature and low-viscosity ( anomalous mantle ) are located under the crust in many tectonically active regions, and viscous flow can easily arise in such material resulting in seismic anisotropy. After cooling, such anomalous mantle acquires high viscosity and becomes incorporated into the lithospheric layer preserving the anisotropy produced by the flows which existed previously. The interaction of the stresses with cracks in the upper crust can be one of the causes of anisotropy in this layer.  相似文献   

10.
Summary. The Lg phase has been shown previously to be a collection of higher-mode surface waves guided by the continental crust (Knopoff, Schwab & Kausel). A simple scaling between continental and oceanic crustal thicknesses suggests that a search for an oceanic Lg phase should be made in the period range from 1 to 2s. In a search for SH polarized Lg arrivals over oceanic paths, we found that in addition to the fundamental mode, seismo-grams at relatively short ranges in the Pacific showed the presence of only the first higher mode with group velocities on the steep portion of the dispersion curve rather than at the group velocity minimum as expected. Numerical model analysis indicates that, contrary to the continental case, there is no strong confluence of stationary phases of higher-mode crustal waves in the appropriate period range to produce Lg wave packets; this is due to small but significant differences in scaled crustal structures. Further, lateral variations in the thickness of oceanic sediments are sufficient to scatter most of the crustal surface-wave energy within a relatively short distance. Even were this thickness uniform, attenuation in the sediments would be strong enough to absorb the Lg stationary phases in a short distance.  相似文献   

11.
Summary. Seismic anisotropy within the upper mantle originates from the preferred orientation of highly anisotropic single crystals. The symmetry and magnitude of anisotropy depend upon: (1) the volume percentages of the minerals constituting the upper mantle, (2) the degree and symmetry of preferred orientation of each mineral and (3) the alignment of the minerals' crystallographic axes relative to one another. The nature of upper mantle anisotropy can be examined by studying mineral orientations within ultramafic rocks which were once part of the mantle. Petrofabric data for olivine and pyroxene have been used to obtain velocity anisotropy patterns over large regions of ultramafic rocks from the Samail ophiolite, Oman, the Troodos ophiolite, Cyprus, the Bay of Islands ophiolife, Newfoundland, the Twin Sisters ultramafic, Washington, USA, the Dun Mountain ophiolite, New Zealand, the Red Hills ophiolite, New Zealand and the Red Mountain ophiolite, New Zealand. The compressional wave anisotropy calculated for these massifs ranges from 3 to 8 per cent, in excellent agreement with observed seismic anisotropy in the upper continental and oceanic mantle. The symmetry varies from orthorhombic to axial, with the axial symmetry axis corresponding to the olivine a-axes maxima and subparallel to spreading directions in oceanic upper mantle. Pyroxene a -, b - and c -axes maxima generally parallel olivine b -, c - and a -axes, respectively, and anisotropy decreases with increasing pyroxene content. Shear-wave splitting is predicted for all propagation directions within the upper mantle. Symmetry is also orthorhombic or axial, with the minimum difference in velocity between the two shear-waves parallel to the maximum compressional wave velocity.  相似文献   

12.
summary . Regression analyses of P -wave velocity measurements on rocks at variable confining pressure yield'effective'mineral velocities which can be used in conjunction with geological data to predict the variation of velocity with depth in major units of continental crustal layering. Such prediction equations are more reliable than those based on density, mean atomic weight, or single-crystal data from the literature, because they take into direct account the effects of cracks on velocity. This is particularly important in the upper crust where many cracks are likely to be partly open: a by-product of the technique is the statistical relationship of cracks and alteration to minerals present in the samples. The technique is demonstrated in measurements of Vp to 3 kbar in rocks sampled in the vicinity of the Lewisian Units Seismic Traverse, in north-west Scotland.  相似文献   

13.
Earthquake prediction: a new physical basis   总被引:16,自引:0,他引:16  
Summary. Subcritical crack growth in the laboratory occurs slowly but progressively in solids subjected to low stresses at low strain rates. The cracks tend to grow parallel to the maximum compressive stress so that, when this stress is aligned over a large enough region, the cracks will also be aligned and possess effective seismic anisotropy. It is suggested that such subcritical crack growth produces extensive-dilatancy anisotropy (EDA) throughout earth-quake preparation zones. This process is a possible driving mechanism for earthquake precursors observed at substantial distances from impending focal zones, and provides, in the shear-wave splitting which has been observed in several seismic regions, a possible technique for monitoring the build-up of stress before earthquakes.  相似文献   

14.
Summary. Theoretical developments of Hudson demonstrate how to calculate the variations of velocity and attenuation of seismic waves propagating through solids containing aligned cracks. The analysis can handle a wide variety of crack configurations and crack geometries. Hudson associates the velocity variations with effective elastic constants. In this paper we associate the variation of attenuation with the imaginary parts of complex effective elastic constants. These complex elastic constants permit the simulation of wave propagation through two-phase materials by the calculation of wave propagation through homogeneous anisotropic solids.  相似文献   

15.
Summary. Fold belts form due to shortening of deep basins on oceaic and continental crust. Basins on the oceanic crust should be characterized by a pronounced seismic anisotropy in the mantle lithosphere. Deep basins on the continental crust may develop from the stretching or the destruction of the lower crust under asthenospheric upwelling. These processes can produce seismic anisotropy in both the crust and mantle lithosphere. The character of the anisotropy is different for different basin forming processes. Considerable anisotropy should also arise from compression of the crust and mantle in fold belts. The formation of fold belts produces the original seismic anisotropy in continental lithosphere.  相似文献   

16.
Laboratory measurements of ultrasonic wave propagation in tuffaceous sandstone (Kimachi, Japan) and granite (Iidate, Japan) were performed during increasing fracturing of the samples. The fracturing was achieved by unconfined uniaxial compression up to and beyond the point of macrofracture of the specimen using a constant low strain rate. The observed variation of wave velocity (up to 40 per cent) due to the development of micro- and macrofractures in the rock is interpreted by rock models relating velocity changes to damage and crack density. The calculated density of the newly formed cracks reaches higher values for the sandstone than for the granite. Using the estimated crack densities, the attenuation behaviour is interpreted in terms of different attenuation mechanisms; that is, friction and scattering. Rayleigh scattering as described by the model of Hudson (1981 ) may explain the attenuation qualitatively if the largest plausible crack dimensions are assumed in modelling.  相似文献   

17.
We infer the lithospheric structure in eastern Turkey using teleseismic and regional events recorded by 29 broad-band stations from the Eastern Turkey Seismic Experiment (ETSE). We combine the surface wave group velocities (Rayleigh and Love) with telesesimic receiver functions to jointly invert for the S -wave velocity structure, Moho depth and mantle-lid (lithospheric mantle) thickness. We also estimated the transverse anisotropy due to Love and Rayleigh velocity discrepancies. We found anomalously low shear wave velocities underneath the Anatolian Plateau. Average crustal thickness is 36 km in the Arabian Plate, 44 km in Anatolian Block and 48 km in the Anatolian Plateau. We observe very low shear wave velocities at the crustal portion (30–38 km) of the northeastern part of the Anatolian Plateau. The lithospheric mantle thickness is either not thick enough to resolve it or it is completely removed underneath the Anatolian Plateau. The shear velocities and anisotropy down to 100 km depth suggest that the average lithosphere–asthenosphere boundary in the Arabian Plate is about 90 and 70 km in Anatolian block. Adding the surface waves to the receiver functions is necessary to constrain the trade-off between velocity and the thickness. We find slower velocities than with the receiver function data alone. The study reveals three different lithospheric structures in eastern Turkey: the Anatolian plateau (east of Karliova Triple Junction), the Anatolian block and the northernmost portion of the Arabian plate. The boundary of lithospheric structure differences coincides with the major tectonic boundaries.  相似文献   

18.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   

19.
Seismic reflection profiles from Mesozoic oceanic crust around the Blake Spur Fracture Zone (BSFZ) in the western North Atlantic have been widely used in constraining tectonic models of slow-spreading mid-ocean ridges. These profiles have anomalously low basement relief compared to crust formed more recently at the Mid-Atlantic Ridge at the same spreading rate. Profiles from other regions of Mesozoic oceanic crust also have greater relief. The anomalous basement relief and slightly increased crustal thickness in the BSFZ survey area may be due to the presence of a mantle thermal anomaly close to the ridge axis at the time of crustal formation. If so, the intracrustal structures observed may be representative of an atypical tectonic regime.  相似文献   

20.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号