首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Internal differentiation processes in a solidifying lava flow were investigated for the Kutsugata lava flow from Rishiri Volcano in northern Japan. In a representative 6-m thick lava flow that was investigated in detail in this study, segregation products darker than the host lavas manifested mainly in the form of pipes (vesicle cylinders) and layers (vesicle sheets), occurring around 0.5–2.3 m and 2.0–4.0 m above the base, respectively. Both the cylinders and sheets are significantly richer in incompatible elements such as TiO2 and K2O than the host lavas, which suggest that these products essentially represent residual melt produced during solidification of the lava flow. Field observation and the geochemical features of the lavas suggest that the vesicle cylinders grew upward from near the base of the flow by continuous feeding of residual melt from the neighboring host lavas to the heads of the cylinders. On the other hand, the vesicle sheets were produced in situ in the solidifying lava flow as fracture veins caused by horizontal compression. The vesicle cylinders have a remarkably higher MgO content (up to 8 wt.%) than the host lava (< 6 wt.%), whereas the vesicle sheets display MgO depletion (as low as 3.5 wt.%). The relatively high MgO content of the vesicle cylinders cannot be explained solely by the mechanical mixing of olivine phenocrysts with the residual melt. It is suggested that the vesicle cylinders were produced by the extraction of olivine-bearing interstitial melt from an augite-plagioclase network in the host lava, whereas the vesicle sheets were formed by the migration of the residual melt from a crystal network consisting of plagioclase, augite, and olivine in the host lava into platy fractures. We infer that this selective crystal fractionation for forming the vesicle cylinders resulted from processes in which abundant vesicles rejected from the upward-migrating floor solidification front prevented olivine crystals from being incorporated into the crystal network in the host lava. The vesicle cylinders are considered to have formed in ∼ 1 day after the lava flow came to rest, while relatively large vesicle sheets (> 1 cm thick) appeared much later (after ∼ 9 days). The formation of these segregation products was essentially complete within 20 days after the lava emplacement.  相似文献   

2.
Segregation structures in vapor-differentiated basaltic flows   总被引:1,自引:0,他引:1  
 Vesicle cylinders represent a spectacular kind of segregation structure involving residual liquids formed in situ during the cooling of lava flows. These vertical pipes, commonly found within basalt flows typically 2–10 m thick, are interpreted as the product of a vapor-driven differentiation process. The olivine phenocrysts and the earliest generation of groundmass olivines found in cylinder-bearing basalts appear to have been generally affected by magmatic oxidation, resulting in high-temperature iddingsite (HTI) alteration. This feature is also observed within cylinder-free basalt flows which exhibit other kinds of vesicular segregation structures, such as vesicle-rich pegmatoid segregation sheets and/or segregation vesicles. Detailed textural, petrological, and geochemical characteristics of two types of cylinders, three types of vesicle sheets, and five types of segregation vesicles are described, based on the study of 12 occurrences of HTI-bearing basalt flows from oceanic shield volcanoes or continental basalt plateaus. We propose a general classification of these segregation structures likely to derive from vapor differentiation. Flow thickness is probably the main factor influencing their morphology. Finally, we suggest that the concomitant occurrence of olivine oxidation and vapor-differentiation effects results from the late persistence of water oversaturation after eruption, perhaps due to a high rate of magma ascent. Received: 27 March 1999 / Accepted: 15 February 2000  相似文献   

3.
An approximately 20-m-thick alkali basalt flow on the Penghu Islands contains ∼20 cm thick, horizontally continuous (>50 m), vesicular layers separated by ∼1.5 m of massive basalt in its upper 8.5 m. The three layers contain ocelli-like "vesicles" filled with nepheline and igneous carbonate. They are coarse grained and enriched in incompatible elements relative to the massive basalt with which they form sharp contacts. These vesicular layers (segregation veins) formed when residual liquid in the underlying crystal mush was forced (gas filter pressing) or siphoned into three thermally induced horizontal cracks that opened successively in the advancing crystal mush of the flow's upper crust. Most vesicular layer trace elements can be modelled by residual melt extraction after 25–40% fractional crystallization of massive basalt underlying each layer. Sulphur, Cl, As, Zn, Pb, K, Na, Rb, and Sr show large concentration changes between the top, middle, and bottom layers, with each vesicular and underlying massive basalt forming a chemically distinct "pair." The large changes between layers are difficult to account for by crystal fractionation alone, because other incompatible elements (e.g., La, Sm, Yb, Zr, Nb) and the major elements change little. The association of these elements (S, Cl, etc.) with "fluids" in various geologic environments suggests that volatiles influenced differentiation, perhaps by moving alkali, alkaline earth, and chalcophile elements as magma-dissolved volatile complexes. Volatiles may have also led to large grain sizes in the segregation veins by lowering melt viscosities and raising diffusion rates. The chemical variability between layers indicates that a convection and concentration mechanism acted within the flow. The specific process cannot be determined, but different rates of vesicle plume rise (through the flow) and/or accumulation in the upper crust's crystal mush might account for the chemical pairing and extreme variations in Cl, S, As, and C. This study emphasizes the importance of sampling vesicular rocks in flows. It also suggests that volatiles play important physical and chemical roles in rapidly differentiating mafic magmas in processes decoupled from crystal fractionation. Received: 11 November 1996 / Accepted: 20 September 1998  相似文献   

4.
Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic–mafic–felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization–differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier’s magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows.  相似文献   

5.
Using constraints from an extensive database of geological and geochemical observations along with results from fluid mechanical studies of convection in magma chambers, we identify the main physical processes at work during the solidification of the 1959 Kilauea Iki lava lakes. In turn, we investigate their quantitative influence on the crystallization and chemical differentiation of the magma, and on the development of the internal structure of the lava lake. In contrast to previous studies, vigorous stirring in the magma, driven predominately by the descent of dense crystal-laden thermal plumes from the roof solidification front and the ascent of buoyant compositional plumes due to the in situ growth of olivine crystals at the floor, is predicted to have been an inevitable consequence of very strong cooling at the roof and floor. The flow is expected to have caused extensive but imperfect mixing over most of the cooling history of the magma, producing minor compositional stratification at the roof and thermal stratification at the floor. The efficient stirring of the large roof cooling is expected to have resulted in significant internal nucleation of olivine crystals, which ultimately settled to the floor. Additional forcing due to either crystal sedimentation or the ascent of gas bubbles is not expected to have increased significantly the amount of mixing. In addition to convection in the magma, circulation driven by the convection of buoyant interstitial melt in highly permeable crystal-melt mushes forming the roof and the floor of the lava lake is envisaged to have produced a net upward flow of evolved magma from the floor during solidification. In the floor zone, mush convection may have caused the formation of axisymmetric chimneys through which evolved magma drained from deep within the floor into the overlying magma and potentially the roof. We hypothesize that the highly evolved, pipe-like ‘vertical olivine-rich bodies’ (VORBs) [Bull. Volcanol. 43 (1980) 675] observed in the floor zone, of the lake are fossil chimneys. In the roof zone, buoyant residual liquid both produced at the roof solidification front and gained from the floor as a result of incomplete convective mixing is envisaged to have percolated or ‘leaked‘ into the overlying highly-permeable cumulate, displacing less buoyant interstitial melt downward. The results from Rayleigh fractionation-type models formulated using boundary conditions based on a quantitative understanding of the convection in the magma indicate that most of the incompatible element variation over the height of the lake can be explained as a consequence of a combination of crystal settling and the extensive but imperfect convective mixing of buoyant residual liquid released from the floor solidification front. The remaining chemical variation is understood in terms of the additional influences of mush convection in the roof and floor on the vertical distribution of incompatible elements. Although cooling was concentrated at the roof of the lake, the floor zone is found to be thicker than the roof zone, implying that it grew more quickly. The large growth rate of the floor is explained as a consequence of a combination of the substantial sedimentation of olivine crystals and more rapid in situ crystallization due to both a higher liquidus temperature and enhanced cooling resulting from imperfect thermal and chemical mixing.  相似文献   

6.
Arenal Volcano has effused basaltic andesite lava flows nearly continuously since September, 1968. The two different kinds of material in flows, lava and lava debris, have different rheologic properties and dynamic behavior. Flow morphology depends on the relationship between the amount and distribution of the lava and the debris, and to a lesser extent the ground morphology.Two main units characterize the flows: the channel zone and the frontal zone. The channel zone consists of two different units, the levées and the channel proper. A velocity profile in the channel shows a maximum value at the plug where the rate of shear is zero, and a velocity gradient increasing outward until, at the levées, the velocity becomes zero. Cooling produces a marked temperature gradient in the flow, leading to the formation of debris by brittle fracture when a critical value of shear rate to viscosity is reached. When the lava supply ceases, much of this debris and part of the lava is left behind after the flow nucleus drains out, forming a collapsed channel.Processes at the frontal zone include levée formation, debris formation, the change in shape of the front, and the choice of the flow path. These processes are controlled primarily by the rheological properties of the lava.Frontal zone dynamics can be understood by fixing the flow front as the point of reference. The lava flows through the channel into the front where it flows out into the levées, thereby increasing the length of the channel and permitting the front to advance. The front shows a relationship of critical height to the yield strength (τ0) surface tension, and slope; its continued movement is activated by the pressure of the advancing lava in the channel behind. For an ideal flow (isothermal, homogeneous, and isotropic) the ratio of the section of channel proper to the section of levées is calculated and the distance the front will have moved at any time tx can be determined once the amount of lava available to the front is known. Assuming that the velocity function of the front {G(t)} during the collapsing stage is proportional to the entrance pressure of the lava at the channel-front boundary, an exponential decrease of velocity through time is predicted, which shows good agreement with actual frontal velocity measurements taken on two flows. Local variations in slope have a secondary effect on frontal velocities.Under conditions of constant volume the frontal zone can be considered as a machine that consumes energy brought in by the lava to perform work (front advancement). While the front will use its potential energy to run the process, the velocity at which it occurs is controlled by the activation energy that enters the system as the kinetic energy of the lava flowing into the front. A relation for the energy contribution due to frontal acceleration is also derived. Finally the entrance pressure, that permits the front to deform, is calculated. Its small value confirms that the lava behaves very much like a Bingham plastic.  相似文献   

7.
Gas accumulation in magma may be aided by coalescence of bubbles because large coalesced bubbles rise faster than small bubbles. The observed size distribution of gas bubbles (vesicles) in lava flows supports the concept of post-eruptive coalescence. A numerical model predicts the effects of rise and coalescence consistent with observed features. The model uses given values for flow thickness, viscosity, volume percentage of gas bubbles, and an initial size distribution of bubbles together with a gravitational collection kernel to numerically integrate the stochastic collection equation and thereby compute a new size spectrum of bubbles after each time increment of conductive cooling of the flow. Bubbles rise and coalesce within a fluid interior sandwiched between fronts of solidification that advance inward with time from top and bottom. Bubbles that are overtaken by the solidification fronts cease to migrate. The model predicts the formation of upper and lower vesicle-rich zones separated by a vesicle-poor interior. The upper zone is broader, more vesicular, and has larger bubbles than the lower zone. Basaltic lava flows in northern California exhibit the predicted zonation of vesicularity and size distribution of vesicles as determined by an impregnation technique. In particular, the size distribution at the tops and bottoms of flows is essentially the same as the initial distribution, reflecting the rapid initial solidification at the bases and tops of the flows. Many large vesicles are present in the upper vesicular zones, consistent with expected formation as a result of bubble coalescence during solidification of the lava flows. Both the rocks and model show a bimodal or trimodal size distribution for the upper vesicular zone. This polymodality is explained by preferential coalescence of larger bubbles with subequal sizes. Vesicularity and vesicle size distribution are sensitive to atmospheric pressure because bubbles expand as they decompress during rise through the flow. The ratio of vesicularity in the upper to that in the lower part of a flow therefore depends not only on bubble rise and coalescence, but also on flow thickness and atmospheric pressure. Application of simple theory to the natural basalts suggests solidification of the basalts at 1.0±0.2 atm, consistent with the present atmospheric pressure. Paleobathymetry and paleoaltimetry are possible in view of the sensitivity of vesicle size distributions to atmospheric pressure. Thus, vesicular lava flows can be used to crudely estimate ancient elevations and/or sea level air pressure.  相似文献   

8.
Lava flux and a low palaeoslope were the critical factors in determining the development of different facies in the Late Permian Blow Hole flow, which comprises a series of shoshonitic basalt lavas and associated volcaniclastic detritus in the southern Sydney Basin of eastern Australia. The unit consists of a lower lobe and sheet facies, a middle tube and breccia facies, and an upper columnar-jointed facies. Close similarities in petrography and geochemistry between the basalt lavas from the three facies suggest similar viscosities at similar temperatures. Sedimentological and palaeontological evidence from the sedimentary units immediately below the Blow Hole flow suggests that the lower part of the volcanic unit was emplaced in a cold water, shallow submarine environment, but at least the top of the uppermost lava was subaerial with some palaeosol development. The lower lobe and sheet facies was emplaced on a low slope (<2°) in a lower to middle shoreface environment with water depths of 20–25 m. Lava may have transgressed from subaerial to subaqueous and was emplaced relatively passively with lava flux sufficiently high and uniform to form lobes and sheets rather than pillows. The middle unit probably originated from a subaerial vent and flowed into a shallow (10–15 m) submarine environment, and wave action probably interacted with the advancing lava front to form a lava delta. Lava flux was sufficiently high to produce well-developed, subcircular lava tubes, which lack evidence for thermal erosion. In some areas, lava ‘burrowed’ into the unconsolidated, water-saturated lava delta and sand pile to produce intrusive contacts. The upper columnar-jointed unit represents a ponded facies probably emplaced initially in water depths <5 m but whose top was subaerial.  相似文献   

9.
Kilauea Iki lava lake formed during the 1959 summit eruption, one of the most picritic eruptions of Kilauea Volcano in the twentieth century. Since 1959 the 110 to 122 m thick lake has cooled slowly, developing steadily thickening upper and lower crusts, with a lens of more molten lava in between. Recent coring dates, with maximum depths reached in the center of the lake, are: 1967 (26.5 m). 1975 (44.2 m), 1976 (46.0 m) and 1979 (52.7 m). These depths define the base of the upper crust at the time of drilling. The bulk of the core consists of a gray, olivine-phyric basalt matrix, which locally contains coarser-grained diabasic segregation veins. The most important megascopic variation in the matrix rock is its variation in olivine content. The upper 15 m of crust is very olivine-rich. Abundance and average size of olivine decrease irregularly downward to 23 m; between 23 and 40 m the rock contains 5–10% of small olivine phenocrysts. Below 40 m. olivine content and average grainsize rise sharply. Olivine contents remain high (20–45%, by volume) throughout the lower crust, except for a narrow (< 6 m) olivine depleted zone near the basalt contact. Petrographically the olivine phenocrysts in Kilauea Iki can be divided into two types. Type 1 phenocrysts are large (1–12 mm long), with irregular blocky outlines, and often contain kink bands. Type 2 crystals are relatively small (0.5–2 mm in length), euhedral and undeformed. The variations in olivine content of the matrix rock are almost entirely variations in the amount of type 1 olivines. Sharp mineral layering of any sort is rare in Kilauea Iki. However, the depth range 41–52 m is marked by the frequent occurrence of steeply dipping (70°–90°) bands or bodies of slightly vuggy olivine-rich rock locally capped with a small cupola of segregation-vein material. In thin section there is clear evidence for relative movement of melt and crystals within these structures. The segregation veins occur only in the upper crust. The most widely distributed (occurring from 4.5–59.4 m) are thin veins (most < 5 cm thick), which cut the core at moderate angles and appear to have been derived from the immediately adjacent wall-rock by filter pressing. There is also a series of thicker (0.1–1.5 m) segregation veins, which recur every 2–3 m, between 20 and 52 m. These have subhorizontal contacts and appear, from similarities in thickness and spacing, to correlate between drill holes as much as 100 m apart. These large veins are not derived from the adjacent wallrock: their mechanism of formation is still problematical. The total thickness of segregation veins in Kilauea Iki is 3–6 m in the central part of the lake, corresponding to 6–11% of the upper crust. Whole-rock compositions for Kilauea Iki fall into two groups: the matrix rock ranges from 20-7.5% MgO, while the segregation veins all contain between 6.0 and 4.5% MgO. There are no whole-rock compositions of intermediate MgO content. Samples from < 12 m show eruption-controlled chemistry. Below that depth, matrix rock compositions have higher Al2O3, TiO2 and alkalies, and lower CaO and FeO, at a given MgO content than do the eruption pumices. The probable causes of this are assimilation of low-melting components from foundered crust, plus removal of olivine, plus removal of minor augite, for rocks with MgO contents of < 8.0%. Given the observed rate of growth of the upper crust, one can infer that significant removal of the type 1 olivine phenocrysts from the upper part of the lake began in 1963 and ceased sometime prior to 1972. The process. probably gravitative settling, appears to have been inhibited earlier by gas streaming from the lower part of the lens of melt. The olivine cumulate zone, which extends into the upper crust, contains relatively few (25–40%) olivine crystals, few of which actually touch each other. The diffuseness of the cumulate zone raises the possibility that the crystals were coated with a relatively visous boundary layer of melt which moved with them. Calculations of the Stokes’ law settling rates of the largest olivine crystals found at the base of the crust in 1975–76 suggest that the «melt» had a viscosity of > 106 poises, and probably had the properties of a Bingham body, rather than a Newtonian fluid, by that date, which was several years after olivine removal ceased.  相似文献   

10.
A well-defined pahoehoe lava type that is very common medially and distally in Hawaii is characterized by a high concentration and fairly uniform distribution of spherical or near-spherical vesicles. Measurements of vesicle sizes and concentrations have been made on ten of these spongy pahoehoe lava flow-units. The vesicles increase in size toward the middle, accompanied by a moderate increase in lava porosity. The close approach to bilateral symmetry on either side of the horizontal median plane and the common occurrence of a median gas blister shows that no significant upward movement of vesicles occurred, suggesting that the lava possessed a yield strength and was more or less static. Olivine phenocrysts when present are, however, concentrated in the lower half of the same flow units, showing that the lava previously lacked a significant yield strength. The vesicles are regarded as early, inherited from the vent, but the size characteristics of the vesicle population are a late-formed feature. Vesicles grew in static lava mostly by coalescence, and it is postulated that coalescence was promoted by the presence of abundant diktytaxitic voids which punctured the walls of contiguous vesicles. Zones in which the vesicle concentration is lower and the vesicles are larger and strongly deformed interrupt the symmetry of some spongy pahoehoe units, and gas blisters higher than the median plane occur in many examples. These zones are interpreted to result from late-stage shearing, and point to a mechanism by which vesicles may be eliminated from a lava.  相似文献   

11.
The Grande Découverte Volcanic Complex (GDVC), active since at least 0.2 Ma, is the most recent volcanic complex of the Basse-Terre Island (Guadeloupe, Lesser Antilles Arc). A detailed geochronological study using the K–Ar Cassignol–Gillot technique has been undertaken in order to reconstruct the history of effusive activity of this long-lived volcanic system. Twenty new ages permit to suggest that the GDVC experienced at least six main effusive stages, from 200 ka to present time. To the north of the GDVC, the GDS (Grande Découverte–Soufrière volcano) has been active since at least 200 ka, and to the south, the TRMF (Trois-Rivières–Madeleine Field), started to be emplaced 100 ka. Morphological investigations suggest that the whole TRMF volcanism was emitted from vents distinct from the GDS, most probably a large E–W fissure network linked to the Marie-Galante rift. The mean age of 62 ± 5 ka, obtained for the E–W Madeleine–Le Palmiste alignment suggests that a fissure-opening event occurred at that time. However, whole-rock major and trace element signatures are similar for both systems, suggesting that a common complex magma-plumbing system has fed the overall GDVC. We report very young ages for lava flows from the TRMF, which implies that < 10 ka volcanic activity is now identified for both massifs. Although hazards associated with such effusive volcanism are much lower than those associated with potential flank-collapse of the Soufrière lava dome or a magmatic dome eruption with explosive phases within the GDS, the emplacement of relatively large Holocene age lava flows (3–1 × 108 m3) suggests that a revised integrated volcanic hazard assessment for Southern Basse-Terre should now consider the potential for renewed future activity from two Holocene volcanic centers including the TRMF.  相似文献   

12.
Contemporaneous Plinian eruptions of rhyolite pumice from Glass Mountain and Little Glass Mountain during the last 1100 years B.P. were followed by extrusion of lava flows. 1.2 km of material was erupted and 10% by volume is tephra. All of the tephra deposits consist of very poorly sorted coarse ash and lapilli that are mostly pumice pyroclasts.Eruptive sequences, chemical composition and petrographic character of the rhyolites at Little Glass Mountain and Glass Mountain suggest that they came from the same magma body. The 1:9 ratio of tephra to lavas is typical of small silicic magma chambers. Eruption from a small chamber, 4–6 km deep, at vents 15 km apart is possible if magma rose along cone sheets with dips of 45–60°. The caldera rim and arcuate lines of vents near it may represent the surface expression of several concentric cone sheets.Pumice pyroclasts erupted at Glass Mountain and Little Glass Mountain may have formed in the following manner: (1) vesicle growth and coalescence beginning at 1–2 km depths; (2) elongation of the vesicles by flow within the cone sheets; (3) disruption of the vesiculated magma when it reached the surface by an expansion wave passing down through it; and (4) eruption of comminution products as pumice pyroclasts. Plinian activity at Little Glass Mountain and Glass Mountain continued until the volatile-rich top of the magma chamber had been depleted.  相似文献   

13.
The model of lithospheric thinning and reheating for the origin of the Hawaiian swell assumes that the lower lithosphere (> 60 km) is rapidly reset to an asthenospheric temperature as it passes over the hot spot. It is shown that this heat input induces melting in a few kilometer thick layer of lithosphere just above the thermal anomaly. By solving the appropriate energy equation, the mean degree of melting in the molten layer was estimated to be 1–5% with a total melt thickness of 25–150 m. The minimum width of the thermal anomaly required to account for the observed rate of post-erosional eruptions is of the order of 10–40 km which is probably satisfied. The melt generated by this process matches the petrological and geochemical characteristics of Hawaiian post-erosional lava and their typical MORB-related isotopic signature. Because small degrees of melting are involved, the extraction time scale is long (a few million years) and is consistent with the time span of post-erosional eruptions. Also, the characteristic sequence of Hawaiian volcanism can be explained if the source for Hawaiian lava is considered as a molten layer with melt fraction decreasing upward.  相似文献   

14.
15.
Rare earth element abundances have been measured in pyroxenitic (19.6% MgO) to gabbroic (7.7% MgO) rocks from the upper part of a thick, layered komatiite lava flow (Fred's Flow) in Munro Township, Ontario. This flow apparently erupted as a highly basic liquid which subsequently differentiated into layers of ultramafic cumulate rocks and a basaltic residual liquid. The analyzed rocks have compositions and spinifex or equigranular textures interpreted to indicate that they represent the complete range of liquids that were present during the differentiation of the lava.All the analyzed rocks are depleted in light REE, and also exhibit a slight depletion of Yb and Er relative to Gd and Dy. Chondrite-normalized Ce and Yb abundances range from 3.2 to 7.8 and 5.1 to 9.7 respectively. Proportions of fractionating minerals were estimated using a major element petrological mixing program and petrographic data. REE modeling based on these results indicates that the dominant process relating the samples is low-pressure fractional crystallization of olivine, followed at lower temperatures by clinopyroxene and plagioclase. Except for Eu, correspondence between observed and calculated REE abundances obviates any need to appeal to processes of major REE redistribution during diagenesis and low-grade metamorphism. Major differences in REE patterns of other ultramafic and mafic komatiitic lava flows [6,11], therefore, probably reflect different episodes of partial melting and/or differences in mantle source composition. The consistency of the REE in the layered flow, however, supports the concept that mafic komatiites can also be derived from ultrabasic parental magmas by low-pressure fractional crystallization. The light-REE-depleted patterns of these komatiites resemble those of modern MORB, suggesting that the mantle source of the komatiites had undergone a previous melting episode.  相似文献   

16.
Lack of water supply during periods of deficient flow affects the economic potentiality of the great river valleys which are the most developed areas in the country. Reservoir dams built in the upper stream catchments store excess flow and provide controlled release in the dry season. Capital costs of construction and the consequences of failures justify a thorough study of operating rules.The low flows and conditional variability of availability of water call for carry-over procedures (reservoir capacity is sometimes greater than the mean available water). It is not possible to predict future sequence of flows, thus the carry-over rule is a statistical decision-making tool. The flow data are only one of the very many possible sources of information. But the analysis of flow data provides us with statistical measures to generate long series of synthetic inflows associated with summer deficits.A simplification has been introduced by choosing only the values which are absolutely necessary for optimal management research: available water volumes and reserve volumes for a flow threshold.Yearly alternate periods of excess and deficiency of water are defined by the values above and below a threshold of flow discharge at a location gage named “objective point”, where the reservoir effects are to be estimated. Yearly periods are described by water volumes, either inflows into reservoirs, or deficits below various thresholds of summer flow discharges. Marginal and conditional probability distributions of these volumes and the physical laws which mark their bounds and relationships were estimated on the basis of 31 years of daily flow records.The synthetic simulated series for 1000 years was compared to records of historical levels (since 1863). Extreme events such as sequences of dry years, have return periods of comparable magnitude.This synthetic series has a similar statistical character of short historical series and makes the analysis of operating rules possible.

Résumé

Les moyennes et basses vallées des fleuves ont en général polarisé le développement industriel et agricole, créant ainsi des besoins en eau croissants. L'implantation de barrages-réservoirs dans les hauts bassins peut contribuer à atténuer les graves conséquences de pénuries. Ils emmagasinent l'eau en période d'abondance et la restituent en étiage. L'importance des investissements et les conséquences d'une défaillance justifient une analyse minutieuse des conditions de gestion de ces retenues.L'aménagement du bassin de la Loire (France) prévoit des réservoirs de capacités importantes vis-à-vis des apports annuels moyens. La variabilité liée des étiages et des apports aux réservoirs, conduit à envisager des reports interannuels. La valeur optimale du report a un caractère statistique, en raison de l'indépendance des caractères hydrologiques des années successives.Une simplification a été recherchée, ne comportant que les grandeurs strictement indispensables à la recherche de la gestion optimale: volumes d'apports et volumes de soutien à un seuil de débit. Les périodes d'apports et de déficits sont définies annuellement par le franchissement d'un seuil de débit à la section objectif du soutien. Les états alternés ainsi obtenus sont caractérisés: (1) pour la période d'apports: par les volumes apportés aux divers réservoirs; et (2) pour la période de déficit: par les volumes déficitaires sous différents seuils de débit au point objectif.Les 31 années d'observations de débits dans le bassin ont permis l'estimation des lois de distributions marginales et liées de ces variables, ainsi que des contraintes physiques qui les bornent. Cette analyse a permis l'élaboration d'un modèle de génération simultanée d'apports aux réservoirs et d'étiages dans la vallée. Une série longue de 1000 ans a ensuite été générée par une méthode de Monte-Carlo.Les résultats de la simulation ont été confrontés aux observations historiques de hauteurs d'eau (110 ans). Les événements exceptionnels ont des fréquences d'ordre de grandeur comparable.Cette série synthétique permet d'envisager une analyse de la gestion dégagée du caractère particulier lié à la brièveté de la série historique.  相似文献   

17.
 We report a novel type of layering structure in igneous rocks. The layering structure in the Ogi picrite sill in Sado Island, Japan, is spatially periodic, and appears to be caused by the variation in vesicle volume fraction. The gas phase forming the vesicles apparently exsolved from the interstitial melt at the final stage of solidification of the magma body. We call this type of layering caused by periodic vesiculation in the solidifying magma body "vesicle layering." The presence of vesicle layering in other basic igneous bodies (pillow lava at Ogi and dolerite sill at Atsumi, Japan) implies that it may be a fairly common igneous feature. The width of individual layers slightly, but regularly, increases with distance from the upper contact. The layering plane is perpendicular to the long axes of columnar joints, regardless of gravitational direction, suggesting that the formation of vesicles is mainly controlled by the temperature distribution in the cooling magma body. We propose a model of formation of vesicle layering which is basically the same as that for Liesegang rings. The interplay between the diffusion of heat and magmatic volatiles in melt, and the sudden vesiculation upon supersaturation, both play important roles. Received: 15 February 1996 / Accepted: 24 June 1996  相似文献   

18.
Komatiites of the 3.5-Ga Komati Formation are ultramafic lavas (>23% MgO) erupted in a submarine, lava plain environment. Newly discovered vesicular komatiites have vesicular upper crusts disrupted by synvolcanic structures that are similar to inflation-related structures of modern lava flows. Detailed outcrop maps reveal flows with upper vesicular zones, 2-15 m thick, which were (1) rotated by differential inflation, (2) intruded by dikes from the interior of the flow, (3) extended, forming a flooded graben, and/or (4) entirely engulfed. The largest inflated structure is a tumulus with 20 m of surface relief, which was covered by a compound flow unit of spinifex flow lobes. The lava that inflated and rotated the upper vesicular crust did not vesiculate, but crystallized as a thick spinifex zone with fist-size skeletal olivine. Instead of representing rapidly cooled lava, the spinifex zone cooled slowly beneath an insulating upper crust during inflation. Overpressure of the inflating lava may have inhibited vesiculation. This work describes the oldest vesicular komatiites known, illustrates the first field evidence for inflated structures in komatiite flows, proposes a new factor in the development of spinifex zones, and concludes that the inflation model is useful for understanding the evolution of komatiite submarine flow fields.  相似文献   

19.
Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60°C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to < 0.02 wt.% in the subaerially erupted lava at the top, and is a measure of the depth of water (or ice) above the eruptive vent. The extensive subsurface crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation.  相似文献   

20.
Thermal–mechanical analyses of isotherms in low-volume basalt flows having a range of aspect ratios agree with inferred isotherm patterns deduced from cooling fracture patterns in field examples on the eastern Snake River Plain, Idaho, and highlight the caveats of analytical models of sheet flow cooling when considering low-volume flows. Our field observations show that low-volume lava flows have low aspect ratios (width divided by thickness), typically < 5. Four fracture types typically develop: column-bounding, column-normal, entablature (all of which are cooling fractures), and inflation fractures. Cooling fractures provide a proxy for isotherms during cooling and produce patterns that are strongly influenced by flow aspect ratio. Inflation fractures are induced by lava pressure-driven inflationary events and introduce a thermal perturbation to the flow interior that is clearly evidenced by fracture patterns around them. Inflation fracture growth occurs incrementally due to blunting of the lower tip within viscoelastic basalt, allowing the inflation fracture to pivot open. The final stage of growth involves propagation beyond the blunted tip towards the stress concentration at the tapered tip of a lava core, resulting in penetration of the core that causes quenching of the lava and the formation of a densely fractured entablature. We present numerical models that include the effects of inflation fractures on lava cooling and which support field-based inferences that inflation fractures depress the isotherms in the vicinity of the fracture, cause a subdivision of the lava core, control the location of the final portion of the lava flow to solidify, and cause significant changes in the local cooling fracture orientations. In addition to perturbing isotherms, inflation fractures cause a lava flow to completely solidify in a shorter amount of time than an identically shaped flow that does not contain an inflation fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号