首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
2013年至今,中国冬季与雾霾相伴的低能见度事件频发,京津冀及周边地区尤为严重。PM2.5浓度与环境湿度是导致低能见度的最关键影响因素。为了深入研究PM2.5浓度与环境湿度对大气能见度的影响,利用2017年1月京津冀及周边地区MICAPS气象数据与PM2.5观测数据,运用天气学诊断分析方法讨论了不同相对湿度下PM2.5浓度、环境湿度对冬季能见度变化的相对贡献,按照地理环境与污染程度差异将京津冀及周边地区划分为北京-天津地区与河北-山东地区,建立了PM2.5浓度与环境湿度(由露点温度、温度代表)对能见度的多元回归方程,并对2015、2016、2018、2019年冬季能见度进行了回算检验。结果显示:相对湿度低于70%、PM2.5浓度低于75 μg/m3时,北京-天津地区与河北-山东地区能见度多高于10 km,PM2.5浓度升高是此时能见度迅速降低的主导因素;相对湿度从70%上升至85%和PM2.5浓度从75 μg/m3升高200 μg/m3的共同作用导致了能见度降低到10 km至5 km;能见度进一步从5 km下降至2 km则更多依赖于相对湿度进一步从85%升高至95%,PM2.5浓度与此时能见度相关减弱;能见度降低至2 km甚至更低主要是由于水汽近饱和状态下(相对湿度95%以上)的雾滴消光引起,与PM2.5浓度的变化关系不大。与不分组直接拟合相比,以相对湿度85%为界线,分别拟合能见度能够很大程度优化多元回归模型,相对湿度高于85%时能见度拟合值的均方根误差从9.2和5.2 km下降至0.5和0.7 km,5 km以下拟合能见度的误差大幅度减小。按相对湿度85%将数据分组所得的拟合方程对2015、2016、2018、2019年1月能见度估算结果较好,观测值与拟合值相关系数均高于0.91,为雾-霾数值预报系统提供了新的能见度参数化算法。   相似文献   

2.
利用2018年12月至2019年2月滨州、德州和聊城PM2.5、PM10、NO2、SO2、CO和O3逐日质量浓度及其对应的气象资料,分析了鲁西北大气污染特征和影响因子。结果表明:2018年冬季鲁西北大气污染比较严重,聊城、德州和滨州轻度及以上污染天数分别占61%、60%和54%,重度以上染污天数分别占24%、11%和9%;首要污染物均为PM2.5、PM10和NO2,其中PM2.5占60%以上。PM2.5、PM10、SO2、NO2和CO日变化呈双峰双谷型,谷值分别出现在04-07时和15-17时,且下午比清晨更低,峰值出现在上午和下午交通高峰期后2-3 h,且峰值上午大于下午;O3呈单峰型分布,09时出现极小值,18-19时出现极大值。PM2.5是鲁西北主要的首要污染物,与PM10、CO、NO2均为显著正相关,并通过0.01水平显著性检验,与NO2的相关性在低相对湿度(< 60%)时大于高相对湿度(≥ 60%),与CO的相关性在高相对湿度时大于低相对湿度;污染时段(PM2.5>75 μg·m-3)的平均相对湿度和平均温度明显大于清洁时段(PM2.5 ≤ 75 μg·m-3),清洁时段风速和气压比污染时段明显偏大。  相似文献   

3.
北京大气能见度的主要影响因子   总被引:4,自引:3,他引:1       下载免费PDF全文
利用北京市道面自动气象站、国家级自动气象站等多种观测数据分析北京地区2007—2015年能见度及其主要影响因子, 并挑选两次典型低能见度事件过程进行详细分析。从空间分布看, 北京西北地区能见度明显高于中心城区和东南大部地区。从时间分布看, 北京地区平均能见度最大值出现在5月, 最小值出现在7月; 日间的最低值多出现在06:00(北京时, 下同)左右, 冬季略向后推迟; 最高值多出现在16:00前后, 冬季略有提前。整体而言, 2007—2015年北京地区发生低能见度事件的概率为62.14%, 且发生低能见度的事件集中于1~5 km, 霾事件中干霾、湿霾的发生频率分别为86.13%和13.87%。能见度的主要影响因子为相对湿度、风速和PM2.5浓度。其中, 能见度与风速呈正相关, 与相对湿度和PM2.5浓度呈反相关。需要指出的是, 当相对湿度增加至80%, 能见度受PM2.5浓度的影响程度在下降, 而主要受相对湿度的影响。基于所选个例, 当北京地区出现湿霾事件时, 能见度的恶化程度远高于干霾事件, 且PM2.5浓度需比干霾事件时下降得更低才能有效改善能见度。  相似文献   

4.
侯梦玲  王宏  赵天良  车慧正 《大气科学》2017,41(6):1177-1190
本文利用GRAPES_CUACE大气化学模式对京津冀地区2015年12月重度雾霾过程进行了模拟和评估。京津冀地区能见度和PM2.5模拟值与观测值的对比表明:该模式能较好地模拟京津冀地区能见度和PM2.5的逐日变化情况,但模式存在对伴随着重污染发生的低能见度模拟偏高的问题。以12月5~10日的重度雾霾过程为重点,针对地面风速、边界层高度、相对湿度、PM2.5及其对能见度的影响进行了详细分析,研究结果表明:污染过程中大部分地区过程平均风速低于2 m s-1,边界层平均高度低于600 m,相对湿度较高。模式低能见度模拟偏高可能因为:(1)模式模拟重雾霾时段的PM2.5极大值浓度偏低。(2)模拟相对湿度存在系统性偏低的误差,这一误差对能见度的影响表现为两方面,一是相对湿度会通过影响可溶性气溶胶的吸湿增长过程影响气溶胶质量浓度,导致气溶胶消光系数的计算偏低;二是目前模式中采用的能见度的参数化公式考虑了相对湿度对气溶胶吸湿增长的影响,没有考虑雾滴的直接消光作用。  相似文献   

5.
利用2010年6月至2011年5月鞍山大气成分观测站的能见度资料,统计分析能见度与PM10、PM2.5、PM1.0质量浓度、风速、降水强度和气溶胶光学厚度等气象要素的相关性。结果表明:鞍山市能见度月均值从8月份开始呈上升趋势,11月份达到峰值后开始显著下降,2月份达到最低值,自3月开始又出现较大幅度增长,进入夏季后略有下降;PM2.5/PM10、PM1.0/PM10比值与能见度呈反相关,能见度增大,PM2.5/PM10、PM1.0/PM10比值减小,且PM1.0/PM10的减小趋势更大,说明影响能见度的颗粒物以细粒子为主。平均风速与能见度变化趋势基本一致,与PM2.5/PM10、PM1.0/PM10的变化趋势呈反相关。随着雨强的增大,降水日能见度平均值随之减小,降水前一日和后一日的能见度平均值均大于降水日,且降水前一日及后一日的能见度改变量及改变率的绝对值随着降水强度的增加而增加。波长指数的变化说明影响鞍山能见度变化的污染物粒子整体较稳定,能见度与AOD成明显的反相关。  相似文献   

6.
天津大气能见度与相对湿度、PM10及PM2.5的关系   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究大气气溶胶及空气中水汽与大气能见度下降的关系,利用2009年天津大气边界层观测站大气能见度资料和同期观测的相对湿度、PM10及PM2.5资料,对三者与大气能见度的关系进行了分析。结果表明:大气能见度与相对湿度线性相关系数最高,PM2.5次之;大气能见度随相对湿度的增大而明显降低。相对湿度低于60 %时,大气能见度与PM2.5的非线性相关性较好,与PM10次之,与PM10与PM2.5差值的相关性最差。相对湿度高于60 %时,大气能见度与PM10的非线性相关性较好,与PM10-PM2.5差值的相关性次之。大气能见度与相对湿度非线性相关系数高于线性相关系数。利用相对湿度、PM10及PM2.5数据计算得到了具有季节变化的非线性大气能见度拟合公式,经验证,该公式能较好地模拟天津地区的大气能见度。  相似文献   

7.
利用2014年夏季成都市3个国控环境监测站(金泉两河,君平街和梁家巷)O3、NO2及PM2.5逐时观测数据,结合国家基准站温江站的气温、湿度、风速、风向、太阳辐照度、降雨等地面气象要素观测资料,分析O3的日、月变化及空间分布特征;探究前体物及气象因子对O3浓度的影响。结果表明:成都市O3-8 h平均浓度为104.4 μg·m-3,O3超标率为2.8%—15.3%。O3浓度6月最高,8月最低;呈现明显的“单峰型”日变化特征,午后15:00达到峰值。O3与NO2呈现负相关,相关系数为-0.5;与PM2.5无显著相关性。高温、低湿、强太阳辐射有利于O3的形成;风速为2.5—3.0 m·s-1,风向为南风时,O3浓度相对较高。  相似文献   

8.
利用2015年1月至2017年6月桂林国家基本气象站能见度、相对湿度、气温、气压、降水等气象要素和PM10、PM2.5、PM1.0颗粒物质量浓度资料,分析桂林城区大气能见度与颗粒物浓度和气象因子之间关系。结果表明:桂林城区大气能见度和PM10、PM2.5、PM1.0呈对数关系,相关系数分别为-0.341、-0.461、-0.509,颗粒物对大气能见度影响在相对湿度为60%—70%时最为显著。在各气象因子中,大气能见度与风速的相关性最好,其次为相对湿度,与风速呈二次函数关系,与相对湿度呈幂指数关系,与温度相关性较小,与气压在秋冬季节呈正相关,相关系数冬季可达0.301,但在春、夏季节相关性不显著;利用颗粒物浓度和气象要素建立8种大气能见度非线性统计回归模型,比较后发现利用PM1.0、风速、相对湿度、气温等因子建立的不同季节大气能见度拟合公式在实际检验中效果最优,能较好地模拟桂林地区大气能见度的变化。  相似文献   

9.
探究京津冀及周边地区大气细颗粒物(PM2.5)和臭氧(O3)短期暴露对人群因病就诊的急性影响及其季节性差异,为区域性大气污染的协同治理提供流行病学证据。收集2013年1月1日—2018年12月31日京津冀及周边地区共14个城市100家医院门诊的日就诊量,以及大气PM2.5和O3日均浓度和气象因子数据,基于时间序列研究设计,采用二阶段统计分析策略(广义相加模型联合meta分析),在控制气象因子和时间趋势等混杂因素的基础上构建双污染物模型,分析大气PM2.5和O3短期暴露对人群因病就诊的影响。研究期间,大气PM2.5和O3日均浓度平均分别为 72.2±56.8 μg/m3和 58.2±36.9 μg/m3,医院门诊就诊量达6257万人 · 次。双污染物模型结果显示,移动平均滞后0—1 d的PM2.5和O3暴露浓度每升高10 μg/m3,医院门诊就诊量分别增加0.25%(95%置信区间(95%CI):0.20%—0.29%)和0.15%(95%CI:0.07%—0.22%);拟合季节分层模型发现,冷季PM2.5暴露对门诊就诊量的急性影响较强,而O3相关效应则呈现出暖季较强的特征。京津冀及周边地区大气PM2.5和O3短期暴露均增大人群因病就诊的风险,提示应采取积极措施协同治理大气PM2.5和O3复合污染,同时重视污染物冷、暖季风险的差异。   相似文献   

10.
近年来中国东北地区污染事件频发,为揭示该地区重污染天气分布特征,利用2014—2017年中国东北地区40个城市空气质量数据及对应的高低空天气形势资料,统计分析得到中国东北地区大气污染状况的变化特征以及区域重污染事件的天气学特征。结果表明:2015—2017年中国东北地区PM2.5和PM10年平均质量浓度呈下降趋势,其中PM2.5年平均质量浓度下降的更快,PM2.5最大值出现在辽宁和吉林中部地区约为90—100 μg·m-3,SO2年平均质量浓度较高值分布在辽宁西部地区约为50 μg·m-3,而NO2最大值出现在沈阳—长春—哈尔滨一带,约为45 μg·m-3,CO质量浓度最大值分布在东北沿海地区约为1.6 mg·m-3,相反中国东北地区O3年平均质量浓度呈上升趋势,最大值出现在沿海的大连及营口等地,约为100 μg·m-3。污染物浓度变化具有鲜明的季节变化特征,不同地区PM2.5和PM10与AQI最大值均出现在冬季,SO2冬季质量浓度最大值出现在沈阳(180 μg·m-3),NO2与CO冬季最大值出现在哈尔滨(80 μg·m-3,1.8 mg·m-3)。相反,O3最大值出现在夏季沈阳地区约为140—150 μg·m-3。重度污染级别(200 μg·m-3≤PM2.5 < 300 μg·m-3)和严重污染级别(PM2.5>300 μg·m-3)的空气质量表现出以哈尔滨为中心,向周围迅速减少,辽宁中部又略有增加的特征;中度污染(150 μg·m-3≤PM2.5 < 200 μg·m-3)的天数沈阳>哈尔滨>长春,轻度污染(100 μg·m-3≤PM2.5 < 150 μg·m-3)的天数是沈阳>长春>哈尔滨。引发中国东北地区重污染的天气形势大致可分为高压型,低压型和北高南低型3种,出现比例分别为62%、27%和11%;高压型850 hPa高压脊东移经过中国东北地区,地面处于高压南部或弱高压中心,有时在黑龙江北部或辽宁西南部连续有弱小的低压生成并快速东移过境;低压型850 hPa低压系统发展并东移经过中国东北地区,地面处于低压后弱高压中;北高南低型850 hPa和地面中国东北地区受北面高压和南面低压的共同影响。  相似文献   

11.
乌海市PM_(10)污染浓度与气象条件分析   总被引:1,自引:1,他引:0  
乌海市PM10浓度与风速的关系明显。总体而言,PM10污染物浓度随风速的增大而增大;冬季当风速在3.1~4.0m.s-1时,PM10污染物浓度低。PM10浓度与地面风向的关系:春季偏西风时PM10污染浓度最高,偏北风时污染浓度最低;冬季东南风时污染浓度最高,西北风时污染浓度最低。PM10浓度与空气湿度的关系:冬季PM10污染浓度值随湿度的增加而增加,正相关比较明显。春季当空气湿度越小,出现重度污染的频率越高。  相似文献   

12.
基于1980~2014年上甸子国家级地面气象台站人工观测的大气水平能见度数据和大气成分站资料,采用Mann-Kendall趋势分析及突变检验法对大气能见度进行分析,并结合气象和污染要素进行相关性检验,以了解华北背景地区大气能见度的变化趋势及其影响因素。结果表明:上甸子地区年均能见度呈下降趋势,能见度最大和最小变率出现在夏季和春季,分别为3.4 km(10 a)-1和1.7 km(10 a)-1;冬季能见度(38.1 km)最高,秋季(36.2 km)次之,春季(32.8 km)和夏季(31.4 km)较低;突变分析表明上甸子地区的年均能见度未出现明显突变。能见度受各类气象因子的综合影响。根据Person相关和偏相关的统计结果,能见度与相对湿度和风速均呈明显负相关;与气压呈明显的正相关;而与气温的相关系数时正时负,表明气温对能见度的影响具有两面性。能见度下降的主要原因为大气污染,能见度随着大气细颗粒物增加呈幂指数降低(决定系数R2=0.98,显著性水平p < 0.01);能见度为10 km时对应的细颗粒物(PM2.5)的边界浓度为74 μg/m3;在现行的国家环境空气质量标准二级标准(75μg/m3)下,可以使华北背景地区保持较高的大气能见度(≥ 10 km)。  相似文献   

13.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

14.
武汉作为中部地区高湿度代表城市,大气污染严重,霾天气多发,但有关该地区大气能见度与PM2.5浓度及相对湿度(RH)的定量关系尚不明确。利用2014年9月—2015年3月武汉地区逐时能见度、相对湿度及颗粒物质量浓度观测数据,研究分析了武汉大气能见度与PM2.5浓度及相对湿度的关系,并进行能见度非线性预报初探,得到以下结论:武汉霾时数发生比例高,霾的发生和加重是能见度降低的主要原因;能见度降低伴随大量细粒子产生和累积,这是武汉大气能见度恶化的重要诱因。细颗粒物浓度与相对湿度共同影响和制约大气能见度变化,高湿高浓度时能见度显著下降,湿情景下(RH≥40%),能见度恶化主要是由湿度增高诱使细颗粒物粒径吸湿增长导致其散射效率增大造成的。当RH >90%时,能见度随湿度升高成线性递减,相对湿度每升高1%,武汉平均能见度降低0.568 km。而干情景下(RH2.5质量浓度升高。在城市大气细粒子污染背景下,能见度与相对湿度成非线性关系,这主要与PM2.5对能见度的影响及吸湿性颗粒物的散射效率变化有关。PM2.5浓度与能见度成幂函数非线性关系,80%≤RH2.5浓度对能见度的影响敏感阈值是随着湿度升高而减小的,干情景下能见度10 km对应的PM2.5浓度阈值为70 μg/m3,湿情景下该阈值为18—55 μg/m3。当PM2.5质量浓度低于约40 μg/m3时,继续降低PM2.5可显著提高武汉大气能见度。预报试验表明,基于神经网络方法建立大气能见度非线性预报模型是可行的,预报能见度相关系数为0.86,均方根误差为1.9 km,能见度≤10 km的TS评分为0.92。网络模型具有较高预报性能,对霾的判别有较高准确性,为衔接区域环境气象数值预报模式,建立大气能见度精细化动力统计模型提供参考依据。   相似文献   

15.
一次持续性雾霾天气过程的阶段性特征及影响因子分析   总被引:4,自引:0,他引:4  
苗爱梅  李苗  王洪霞 《干旱气象》2014,32(6):947-953
应用常规与非常规气象观测资料及PM2.5浓度监测资料,对2013年1月20~24日山西区域一次持续性雾霾天气过程进行分析。研究发现:(1)本次雾霾天气过程具有明显的阶段性特征。2013年1月20日14时至23日11时,由于相对湿度的变化导致了3次轻雾转大雾过程;23日14~20时,由于PM2.5浓度的增大经历了1次轻雾转霾的天气过程。(2)地面弱的气压场和较小的风速以及PM2.5浓度的上升和相对湿度的增大为本次持续性雾霾天气过程的形成和发展提供了有利条件。(3)边界层逆温的存在是雾霾低能见度过程形成的必要条件,边界层有逆温层而不出现雾霾天气的条件是:相对湿度〈50%,PM2.5日均值浓度〈75μg·m-3;逆温层下相对湿度的大小是区别雾和霾天气的指标。(4)相对湿度和PM2.5是决定能见度大小的关键因子,其对能见度的影响体现出明显的阶段性特征,当相对湿度〈90%时,PM2.5浓度对能见度的作用强于相对湿度,是影响能见度变化的主要因子,但随着相对湿度的增大,其对能见度的影响相对增强,当能见度降至1 km以下时,相对湿度成为影响能见度变化的主要因子。  相似文献   

16.
沈阳两次降水过程中能见度的变化特征   总被引:1,自引:0,他引:1  
利用2011年7月29-31日,8月27-29日沈阳大气成分观测站的能见度资料,统计分析了能见度与降水强度、PM10、PM 2.5、PM 1.0质量浓度、风速、相对湿度等气象要素的相关性。结果表明: 7月29-31日降水过程特点为个别时间内降水量较大,8月27-29日降水过程特点为持续几个小时都有较大降水量;7月29-31日和8月27-29日降水过程中,初期降水对PM的湿清除效果较好,后期随着降水强度的增加,能见度有所降低;7月29日0时-31日23时期间内,PM质量浓度在降水过程中出现5 μg•m-3左右的低值是因为降水和较大风速的双重作用,而8月27日0时-29日23时期间内的降水过程中,风速较稳定,PM质量浓度的改变量相对较小;7月29日-31日和8月27日-29日降水过程中,平均风速与PM10、PM 2.5、PM 1.0的变化趋势均呈反相关,较高的相对湿度有利于PM质量浓度的上升;7月29-31日和8月27-29日降水过程中,能见度与PM 2.5/PM10、PM 1.0/PM10的比值变化趋势均呈明显的反相关。随着颗粒物粒径的减小,其与能见度的相关性逐渐增加。  相似文献   

17.
本文利用成都双流机场2004~2015年逐时观测资料,分析了双流机场低跑道视程(RVR<550m)特征。双流机场低RVR主要出现在11~3月,05~10时出现最多,当出现低RVR时,维持在II类运行标准内的比率仅为25.9%,可实施II类运行的时间有限,低于起飞最低标准的比率为49.8%。通过对出现低RVR时,能见度、风速、温度、相对湿度和修正海平面气压逐月分布的特征分析,提取预报依据,构建了双流机场低RVR预报思路。   相似文献   

18.
利用2014~2019年冬季ERA5再分析资料、成都市PM2.5和PM10逐日浓度数据以及污染物(二氧化硫、氮氧化物、烟粉尘)年排放量数据,通过分析四川盆地近6 a气溶胶污染物的时间变化特征以及PM2.5浓度与气象条件的相关性,探讨了气象条件对四川盆地气溶胶污染的影响。结果表明:近6 a四川盆地冬季气溶胶污染物浓度和严重、重度污染天数均呈波动下降趋势,污染物浓度年际变化与污染物年排放量存在一定差异。首要污染物以PM2.5为主,PM2.5浓度与青藏高原及其下游地区气象条件的关系密切,与对流层低层、中高层气象要素的相关性存在差异,其中与青藏高原及其以北和以东地区850~500 hPa气温呈显著正相关,尤其是与易出现逆温层的四川盆地850~750 hPa温度的相关性最强。当850 hPa东北风较弱且相对湿度偏高、700 hPa西风较强且湿度偏低、500 hPa高压偏强且西风偏弱时,PM2.5浓度偏高;反之亦然。   相似文献   

19.
利用中国国家地面站逐小时气象观测资料、中国环境监测总站空气质量逐时监测数据、ECMWF 0.125°(纬度)×0.125°(经度)再分析资料及青岛市八关山自动站常规要素逐小时数据,对2018年1月15~22日青岛市一次重度污染雾—霾天气过程的特征及其影响因子进行分析。结果表明:PM10为首要污染物,污染过程中青岛市48 h 输入污染源前期主要为北方干冷气团与江淮湿空气在山东半岛北部汇聚堆积,后期则主要包括山东省内局地大气污染物排放。雾—霾期间,500 hPa中高纬地区受乌拉尔山阻塞高压和中西伯利亚冷低压控制,宽广的东亚横槽稳定维持,青岛上空以平直西风气流为主,地面等压线稀疏,风速小;随着横槽转竖,纬向型环流转为经向型,冷空气大举南下,风速急增,降雪发生,雾—霾迅速消散。在静稳的大气环流背景下,当近地逆温层内弱风或持续吹陆风,对流层低层上升和下沉运动较弱,水汽条件较好时,有利于雾—霾维持。综合分析雾—霾各阶段PM2.5浓度和相对湿度与能见度间的关系发现,霾阶段两因子影响力相当;雾阶段能见度主要受相对湿度的影响;静稳条件下PM2.5浓度累积增加是影响雾、霾混合阶段能见度的主要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号