首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
利用2017-03~2018-03共30景Sentinel-1A SAR数据,分别采用PSI和SBAS技术获取成都市主城区地面形变分布信息,结合地面水准资料对InSAR结果进行精度评估,并初步分析地面沉降的原因。结果表明,成都市大部分区域稳定,平均形变速率主要集中在-5~5 mm/a;地面沉降主要位于一环线以外地区,地铁5、6号线主要站点及周边不均匀沉降明显,最大沉降速率达到20 mm/a;在成华区和锦江区等部分新建城区有不同程度的地面沉降,速率为5~15 mm/a,PSI和SBAS结果相关性较高。  相似文献   

2.
利用山东地区38个GNSS基准站2011~2016年连续6 a的观测数据,对山东地区地壳垂向形变场特征进行系统分析。结果表明,山东地区地壳垂向形变具有明显的差异性,形变量最大的区域为山东西南部地区,形变速率约为-24.0 mm/a;西北部地区形变速率较大,为-15.0 mm/a;东南部以及沿海地区沉降速率较小,为-0.5~3.0 mm/a;而在中部地区(泰山山脉)呈隆升趋势,形变速率为0.3~5.0 mm/a。  相似文献   

3.
采用2019-01~2022-03共90景Sentinel-1A卫星影像,基于PS-InSAR技术对天津市及其周边地区(下文简称“天津区域”)地表形变进行监测分析。结果表明,沉降主要发生在天津市外围,其中邻近天津市的河北省胜芳镇最大地面沉降速率达80 mm/a。为探究天津区域沉降内因,结合随机森林土地分类结果分析地表形变的地理分布特征,为地质灾害综合治理和地下水资源开发利用提供参考依据。  相似文献   

4.
苏州地区位于中国苏锡常地面沉降带,地面沉降严重影响了该地区的经济社会发展,因此对其进行地面沉降监测具有重要的意义。本文基于SBAS InSAR方法,利用27景ERS-2 SAR数据,反演了苏州地区2007-2010年地表年平均沉降速率分布图和时序沉降变化图,分析了该时间段地表沉降的时空演化特征。结果表明,在整个研究观测期,苏州地区整体呈现出“老区沉降趋缓,新区沉降较快”的特点。老城区(姑苏区及邻近的吴中区)地面沉降趋于缓和,年平均沉降速率在10 mm/a以下,无明显的沉降中心;而相对新发展的区域(相城区、工业园区和吴江区)则表现出明显的沉降特征,沉降速率普遍大于10 mm/a。其中,相城区年平均沉降速率大约为10~20 mm/a,局部地区沉降严重,速率可达或超过20 mm/a;工业园区年平均沉降速率约20 mm/a,最大累计沉降量在50 mm左右。吴江区地面沉降最为严重,表现出面积广、速率大的特点,其年平均沉降速率在 20 mm/a左右,最大累计沉降量可达60 mm以上。  相似文献   

5.
为提高地面形变监测的时空分辨率以及监测精度,采用CORS网与时序InSAR监测相融合的方法,对北京地区2018~2020年地面垂直方向形变进行研究。首先在InSAR监测量中去除极浅地表影响;然后对CORS站数据进行低频重构;最后以CORS网为基准,对InSAR监测时序进行整体平差,获得融合形变结果。结果表明,融合CORS网和InSAR监测能有效利用CORS网连续观测的优势,获取连续一致的高时空分辨率形变结果,融合方法在构建高分辨率与高精度地面形变时间序列中具有一定优势。在地面垂直方向上,朝阳区、通州区、大兴区中南部地面沉降最为明显,最大年平均形变速率达到-90 mm/a;昌平区中西部、海淀区西部、门头沟区东部等地存在较为明显的抬升,年平均形变速率约为10~20 mm/a;其他地区地面年平均形变速率约为-10~10 mm/a,相对变化较小,较为稳定。  相似文献   

6.
利用合成孔径雷达干涉测量(InSAR)技术对2017-06~2020-06期间获取的Sentinel-1数据集进行处理和分析,获取北京近几年地面沉降区域的时空分布特征。结果表明,北京地表形变呈现5处沉降区,最大年形变速率为-111.3 mm/a。将InSAR结果与GPS观测资料进行对比,验证了时序InSAR的有效性。对比2018年和2019年的年形变速率可知,各个沉降范围内的沉降面积均在减小,且沉降减缓的面积远大于沉降加速的面积。局部调查后发现,5处沉降区除1处仍在加速沉降外,其他4处的沉降速度均在减缓。  相似文献   

7.
基于PS-InSAR和SBAS技术监测南京市地面沉降   总被引:1,自引:0,他引:1  
利用覆盖南京地区的23幅Sentinel-1A影像,分别采用PS-InSAR技术和SBAS技术进行数据处理,获得了两组研究区域的地表沉降信息,并对两组结果进行交叉验证分析。结果表明,两种方法获取的结果无论是在沉降范围还是在形变量级上,都具有高度的一致性;研究区域在2015-04~2017-01期间存在地面沉降问题,且最大的沉降速率达到-30 mm/a。  相似文献   

8.
基于覆盖合肥地区的24景Sentinel-1A数据,采用PS-InSAR和SBAS-InSAR时序处理方法获取2017-11~2019-10合肥市城区及周边地面形变分布信息,分析主城区地面沉降的时空演化规律,获取地铁网络沿线地表形变空间分布图。结果表明,合肥市地铁线路沿线发生不同程度形变,形变严重区域主要集中在西部及西南部,最大沉降速率达到35 mm/a。对池河-西山驿断裂形变场进行宏观分析,并结合时空同步的跨断层水准数据进行对比验证,认为2种数据的垂直形变监测结果具有一致性,推测数据的垂直升降变化可能受断层拉张和挤压交替控制。  相似文献   

9.
利用2017-07~2019-04 Sentinel-1A数据对阿海电站区域滑坡形变速率及位移时间序列进行监测分析,并利用同期GPS数据对SBAS-InSAR监测结果的可靠性进行评价。结果表明,在InSAR观测时间内滑坡形变量从坡体后缘向前缘逐渐递增,最大形变速率可达136.7 mm/a,最大累积形变量达216 mm;在形变量较小区域,SBAS-InSAR与实测GPS值较为接近,精度较高,但在形变梯度较大区域,两者还存在一定差异。  相似文献   

10.
对华北地区1999年以来的大规模GPS流动站、连续站观测资料采用最新的数据处理策略进行统一处理,获得364个测站的有效垂直运动速度场。结果显示,该区域垂直形变有升有降,总体上与地貌相关:山西高原、燕山及苏鲁带以隆升为主,而华北平原由于开采地下水造成大面积下沉。通过对垂直运动场进行区域平均分析,得到山西高原平均上升速率为1.8 mm/a,苏鲁造山带及燕山地区上升速率不显著。华北平原的垂直运动主要以沉陷为主,最大下沉速率达144.0 mm/a,平均为40.0 mm/a。大规模GPS垂直运动特征显示,华北地区现今垂直运动是新构造运动的继承,并叠加有人为造成的地面沉降。  相似文献   

11.
????1998-2006??????????????????????????????????????о??????????????????????????????????????????39.3°N??磬?????????????????С???????????????????1998-2002???в????????????????????????2002-2004??????????????????????2004-2006??????????  相似文献   

12.
京津高铁是中国第一条高速运行的城际铁路,其安全运行对轨道的平顺性有着严格的要求。地面沉降,尤其是不均匀地面沉降会引起部分路基和桥梁变形,威胁着高速铁路的运营安全。合成孔径雷达干涉测量技术可以大范围监测地表形变,对高速铁路沿线地面沉降具有较好的监测能力。本文以45景高分辨率TerraSAR-X 数据为基础,采用 PS-InSAR技术监测京津高铁北京段沿线地面沉降,获取京津高铁北京段沿线地面沉降的分布信息,从动静载荷视角结合北京地区地下水、断裂带、地质条件和含水层系统介质等数据,综合分析高铁沿线不均匀地面沉降的原因,为京津高铁的安全运营提供技术支撑。研究结果表明:京津高铁北京段沿线地面沉降发展在空间上存在一定差异性,北京南站至十里河区间,年沉降速率小于10 mm/a; 至十八里店区间,年沉降速率在10~40 mm/a范围内浮动;过亦庄站至东石村以东区间,最大年沉降速率达到90 mm/a;至永隆村以西,年沉降有所缓解,往东至坨堤村,沉降较为稳定,年沉降速率小于10 mm/a。地下水超采是沿线区域地面沉降的主要因素,动静载荷共同作用下对地面沉降产生一定的影响,沿线地面沉降一定程度上受到南苑—通县断裂带和旧宫断裂带构造控制,沉降量较大的路段位于粘土层较厚的大兴迭隆起。  相似文献   

13.
GPS观测得到的天津地区的现今变形   总被引:5,自引:1,他引:4  
1995年为了监测天津市的地面变形,配合地面沉降的精密水准测量,在天津市布设了一个GPS监测网。从1995年开始,每年的10月或11月进行一次精密GPS测量,到2001年已连续观测7年,在重新系统处理这7年资料的基础上,对天津地区的现今变形进行了研究,并与同时进行的精密水准复测的垂直变形结果进行了比较。结果表明,在扣除了天津地区随同欧亚板块在地球表面的整体运动之后。天津地区仍然有以东向运动为主要特征的水平运动,年速率约为8.4mm/a,这与整个华北地区的东向运动一臻。天津地区的垂直变形主要是因抽用地下水,油,气引起的地面沉降。用GPS测得的沉降量与用精密水准得到的结果相当一致,天津地区的垂直变形主要是因抽用地下水,油,气引起的地面沉降,用GPS测得的沉降量与用精密水准得到的结果相当一致,其偏差均方根值为11.6mm/a。据此对天津地区的地面沉降监测问题提出了建议。  相似文献   

14.
Due to long-term over-exploitation of groundwater in Beijing Municipality,regional groundwater funnels have formed and land subsidence has been induced.By combining a groundwater monitoring network,GPS monitor-ing network data,radar satellite SAR data,GIS and other new technologies,a coupled process model based on the dy-namic variation of groundwater and the deformation response of land subsidence has been established.The dynamic variation of groundwater funnels and the land subsidence response process were analyzed systematically in Beijing.Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District,the northeast of Chaoyang District and the northwest of Tongzhou District,with an average decline rate of groundwa-ter level of 2.66 m/yr and a maximum of 3.82 m/yr in the center of the funnels.Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution,where the maximum land subsidence rate was about-41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2.Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel,this consistency was not perfect.The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR,GIS,GPS,providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.  相似文献   

15.
随着北京轨道交通的日益完善,地铁成为人们日常出行的重要交通工具,监测和治理地铁工程沿线地面沉降成为保障线性工程正常运营的一项重要基础性工作。本文基于55景覆盖北京地区的3 m高分辨率TerraSAR-X数据,采用时序InSAR分析技术获取2010年4月至2016年12月地铁网络沿线的地面沉降形变信息,系统分析了北京地铁网络沿线地面沉降时空演变规律。同时,结合Peck公式将InSAR监测结果进行建模,以7号线磁器口-广渠门内站区段为例,估算地面沉降槽的空间发展特征。研究发现:北京市地铁线路沿线表现出不同程度的形变,形变严重的路段主要集中在东部及东北部区域,最大沉降速率超过了100 mm/a;相对于其他线路,4号、10线整体情况比较稳定,14号、亦庄线次之,6号、7号线不均匀沉降最为严重;此外,地铁在不同建设时期路段表现出不同的形变特征,施工期路段较运营期沉降严重;7号线磁器口与广渠门内站间沉降槽的宽度和最大值沉降值在2010-2016年呈现增加趋势,沉降槽最大宽度约达180 m。  相似文献   

16.
北京从20世纪50、60年代发现地面沉降以来,其一直呈快速发展的态势。在过去的几十年里,北京市地面沉降的范围和速度逐年增加。本文以北京市典型地面沉降区为研究区,选择永久散射体合成孔径雷达干涉测量技术所获取的2004-2010年间北京地面沉降信息作为主要数据源,补充水准测量数据(1955-2010年),从空间分布和时序变化2个角度,分析北京市平原典型区地面沉降演化特征。结合地下水动态监测网数据、土地利用数据,采用GIS空间分析,研究各因素和地面沉降之间的时空响应关系。结果表明,北京地区地面沉降严重区域面积不断扩大,且局部不均匀程度逐渐增加。在研究期内,地下水水位变化在时间和空间上与地面沉降有较高的一致性,地下水超量开采是影响北京地区地面沉降的最主要因素,而城市发展过程中的工程活动也是影响地面沉降时空分布特征的因素之一。研究结果可为北京市地面沉降防控提供一定的科学依据。  相似文献   

17.
???27??ENVISAT ??????????????????????????PS??InSAR??????????????д??? ????????????????2006-2010?????α????о??????????1??????????????????????????????????????????????????????7??????????????г??????????????????????????????????????????????????????????LOS??????-27.19±5.66 mm/a??-24.65±5.14 mm /a??2?????????????????????????230 km2??3???????????????????????10.92±3.24 mm/a????????20????80????????????????????ε???????????????????4?????????????????????????????????????????????????  相似文献   

18.
20世纪60年代以来,北京市地面沉降不断发展,目前已经形成了东郊八里庄-大郊亭、东北郊-来广营、昌平沙河-八仙庄、大兴榆垡-礼贤和顺义平各庄5个沉降区。本文选取目前地面沉降较为严重的北京市朝阳区、顺义区和通州区作为研究区,利用2003-2010年的47景ASAR影像数据,采用SBAS-InSAR技术获取了研究区的地面沉降监测结果,并分别以SFP点年均沉降速率和各年沉降量作为权重,计算SFP点空间分布中心与方向特征椭圆,定量分析了研究区地面沉降时空特征。结果表明:2004-2010年,北京市地面沉降表现为严重的不均匀沉降,年沉降量最大值由104.04 mm增加到178.83 mm;标准差椭圆长轴与南北方向平行,反映出地面沉降空间发展方向性在南北方向较东西方向明显,椭圆面积由592.25 km2减小到 503.84 km2,表明2004-2010年研究区内发生地面沉降的区域范围变化呈减小趋势,但从沉降量可以发现,北京地面沉降一直处于加重趋势。  相似文献   

19.
北京平原区地面沉降问题日益突出,成因复杂,既包括人为地下水开采和城市建筑荷载作用,又包括自然土体固结和活动构造影响。地下水开采和建筑荷载是重要的驱动因素。如何提取区域尺度建筑载荷,评价其对地面沉降影响,是地面沉降灾害防治工作需要开展的重要环节。本文以简化后的容积率表征建筑载荷,首先利用PS-InSAR技术获取研究区地面沉降信息,然后使用GIS空间分析的方法提取出同等地下水开采影响下的不均匀沉降分布,其次采用阴影长度法提取了研究区建筑体高度,最终结合空间分析和回归分析方法研究建筑容积率与地面沉降之间的关系。主要研究结论:① 北京地区地面沉降比较严重,沉降速率大于30 mm/a的区域占比21.08%;② 地下水开采同等影响下的不均匀沉降区呈H形分布于平原区中部和北部;③ 阴影长度法能够较准确的评估出建筑容积率,可用于区域尺度静载荷的提取与分析;④ 在地质条件相似、水位变化相同的局部区域内,地面沉降速率与建筑容积率具有一定相关性,但相关系数较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号