首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
基于CloudSat资料的中国及周边地区各类云的宏观特征分析   总被引:10,自引:2,他引:8  
利用2006年7月—2009年4月的CloudSat2B-CLDCLASS云分类资料,针对中国及周边地区(0°—60°N,70°—140°E)各类云量和垂直结构参数的地理分布及季节变化进行了统计分析,并根据气候特征的地域差异从该区域选出8个子区域,逐区统计了各类云的垂直结构特征。结果表明,各类云量的分布存在较明显的区域差异和季节变化;青藏高原和帕米尔高原地区卷云、高层云和高积云等中高云的高度和厚度相对较小,陆上深对流云的云底高度大于海上,而热带、副热带地区云顶高度大于中纬度地区;除积云、层积云和雨层云外,中国南方地区其他各类云的云层厚度均大于北方地区;除了层积云外,其他各类云的云顶高度在各区域都存在比较明显的季节变化,低云云底高度的季节变化和区域差异都很小,而中高云的云底高度除了在印度洋季风区、南海和西太平洋地区季节差异较小外,其他地区季节差异较明显,各个地区在任何季节内,深对流云厚度最大,层积云最小;各类云出现频率随高度的分布具有较明显的区域差异;卷云与高积云的相关性比较强,经常相伴出现,夏季更加明显,而雨层云和深对流云之间相互排斥,两者几乎不可能同时出现。此外,统计中国及周边地区各类云的水平均一性发现,中...  相似文献   

2.
基于卫星资料的中国西部地区云垂直结构分析   总被引:1,自引:0,他引:1  
利用2007年3月2008年2月CloudSat与CALIPSO卫星相结合的云分类产品2B-CLDCLASS-LIDAR数据,分析了中国西部及周边地区云的垂直结构特征。研究结果表明,各地区单层云出现频率均大于多层云,天山山脉、祁连山脉中西段多层云出现频率全年均大于周围地区;所有云的云顶和云底高度在不同高度的出现频率具有明显的区域和季节变化特征,且云顶高度的季节变化较云底高度显著;西北地区各云层高度的季节变化不明显,青藏高原(下称高原)地区各云层高度在冬、夏季反差较大;单层云的平均厚度超过2 km,2层云和3层云的厚度基本在1~2 km;云层间距以2层云最大,且高原地区云层间距季节变化较西北地区明显;高原南坡夏季冰云出现频率较多,其他地区冬、春季冰云出现较多,除高原南坡外,冬季冰云出现频率均在80%以上。  相似文献   

3.
利用2007年3月2008年2月CloudSat与CALIPSO卫星相结合的云分类产品2B-CLDCLASS-LIDAR数据,分析了中国西部及周边地区云的垂直结构特征。研究结果表明,各地区单层云出现频率均大于多层云,天山山脉、祁连山脉中西段多层云出现频率全年均大于周围地区;所有云的云顶和云底高度在不同高度的出现频率具有明显的区域和季节变化特征,且云顶高度的季节变化较云底高度显著;西北地区各云层高度的季节变化不明显,青藏高原(下称高原)地区各云层高度在冬、夏季反差较大;单层云的平均厚度超过2 km,2层云和3层云的厚度基本在1~2 km;云层间距以2层云最大,且高原地区云层间距季节变化较西北地区明显;高原南坡夏季冰云出现频率较多,其他地区冬、春季冰云出现较多,除高原南坡外,冬季冰云出现频率均在80%以上。  相似文献   

4.
利用西安微波辐射计、西安风廓线雷达、FY 4A卫星云图等新型探测资料,对2018年7月26日发生在西安地区的一次强对流天气过程进行分析。结果表明:(1)微波辐射计可以较好地反映液态水含量、大气相对湿度和云底高度在降水过程中的垂直变化规律。液态水含量越大,降水强度越强;相对湿度在强对流发生时呈现中间层的大值区向低层扩展趋势,中高层相对湿度明显减小,2 km以下相对湿度急剧增加,加剧层结不稳定;云底高度在强对流前有剧烈波动,强降水时段降为0 km。(2)在对流天气发生前,风廓线雷达水平风具有明显的垂直切变,水平风向、风速的不连续性明显。(3)FY 4A 闪电探测产品可以监测覆盖区域的总闪电,其分布与雷达回波及对流云团发展位置相吻合,时间变化趋势一致;卫星云图TBB最小值中心(<-65 ℃)区域出现明显降水、大风天气,强降水位于对流云团内部、TBB最小值中心附近。  相似文献   

5.
基于Cloud Sat-CALIPSO(Cloud Sat–Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了全球总云量和8类云的云量、云底高、云顶高、云厚度的水平和垂直分布。分析结果表明,全球平均总云量为66.7%,其中卷云(Ci)和层积云(Sc)云量之和与其他6类云量总和相当,是全球云量最多的两类云。积状云云量呈现从赤道向极地递减的特征,层状云则相反,反映了二者不同的生成环境,同时下垫面地形和天气系统也严重影响云的分布。8类云的高度及厚度特征有显著差异。Ci的云底高度和云顶高度都较高,厚度则较薄;高层云(As)和高积云(Ac)的云底高度和云顶高度都位于大气中层,但As比Ac出现的高度高且厚度大;层云(St)、层积云和积云(Cu)的云底高度和云顶高度都很低,属于薄的低云;雨层云(Ns)和深对流云(DC)云底较低但云顶伸展很高,归属于厚云类。总体而言,海洋上云底高度较陆地低;赤道等大气不稳定地区,云底较高,云厚度较大;高原地区则表现出"高云不高,低云不低,云厚较薄"的特征。  相似文献   

6.
分析和预报局地对流时常用到对流温度,对流凝结高度常被用于估计局地对流云的云底高度。对流温度和对流凝结高度用于局地对流分析时存在一定的前提,且其蕴含的物理意义非常丰富。论文剖析了几本较为经典的气象专业书籍中对流温度概念图示,指出其中隐含的悖论,包括与大气稳定度基本常识相悖、违反大气能量学理论、以及与物理量本身含义明显抵触。进一步阐释构图不够严谨、对对流温度含义理解不完全到位是出现这种悖论的根本原因。并构造了物理意义清晰、气象基本理论更为合理的对流温度示意图。利用观测资料,分析了北京夏季对流云的发生频数和生成时间,尝试用对流温度预报局地对流云的生成,用对流凝结高度预报局地对流云云底高度。结果表明,对流温度在局地对流云的预报中具有一定的指示意义,对流凝结高度能在一定程度上反映出局地对流云的云底高度。如果将最高温度不低于对流温度1℃作为判定能否产生对流云的一个标准,临界成功指数达到45%。  相似文献   

7.
获取准确的云高及其变化特征,对于揭示天气系统的演变以及改进气候模式具有重要作用。由于不同设备观测云高的不确定性,将锋区要素不连续变化理论引入云高分析中,将云底部、云顶部大气的交界过渡带区域视为云锋区,研究探空、毫米波雷达、风廓线雷达等不同类型设备观测要素在云锋区及云外环境大气的变化特征。对流云和层状云个例研究表明:在云锋区,温湿度及雷达反射率因子随高度的一阶、二阶导数均呈不连续现象(即一阶、二阶导数值在云内外和云锋区表现为不相等),风廓线雷达信噪比垂直梯度也出现突变,因此不同设备观测云高具有较好空间一致性,并得到云底和云顶高度的合理范围和相应判据;相对于层状云,对流云内外温度梯度差异以及云体内反射率因子二阶导数的脉动变化幅度均偏大,因此可作为区分二者的参考指标。  相似文献   

8.
中国降水云云底高度的估算和分析   总被引:3,自引:2,他引:1  
刘雪梅  张明军  王圣杰  赵培培  王杰  周盼盼 《气象》2016,42(9):1135-1145
基于国家气象信息中心发布的622个气象站点1960—2013年的降水量、气压、气温、水汽压和相对湿度等日数据及249个气象站点2013年8月25日至9月25日02、08、14和20时数据,利用中国气象局、Barnes和(Georgakakos的经验公式来计算抬升凝结高度从而近似降水云云底高度,归纳出中国降水云云底高度的时空分布特征。结果表明:(1)在整体、季节(除冬季外)、小时和降水量等级为Ⅰ级(P10mm)、Ⅱ级(10 mm≤P25 mm)时的空间分布特征基本一致,即自东南向西北逐渐增高,没有显著的年际差异。(2)区域差异显著,就四大自然区(北方地区、南方地区、西北地区和青藏高原地区)而言,青藏高原地区和西北地区的降水云云底高度高于平均云底高度,且除青藏高原地区外其他地区的云底高度呈逐年下降的趋势。(3)从季节差异看,春、夏季的降水云云底高度高,冬季的云底高度最低。(4)日变化明显,08时的降水云云底高度最低,14时最高。(5)利用三种算法算出中国降水云云底高度和降水量的相关系数分别是-0.47、-0.46、-0.44,中国云底高度和相对湿度的相关系数分别是-0.81、-0.81、-0.79,均呈负相关。  相似文献   

9.
中国及周边海域对流云团的水平和垂直尺度   总被引:1,自引:0,他引:1  
利用2007年1月-2010年12月CloudSat-CALIPSO二级云产品2B-CLDCLASS-LIDAR,统计中国及其周边海域对流云的发生频率,根据对流云发生频率的分布特征将中国及周边海域划分为青藏高原(TP)、东部陆地(EC)、南部海域(SO)和西北太平洋(WP)4个子区域,并研究了4个子区域积云团和深对流云团的水平尺度和垂直尺度。统计结果表明,海洋积云团的水平尺度约为2 km,陆地积云团的水平尺度约为1 km,海洋下垫面热力性质均匀,积云团尺度更大;陆地下垫面非均匀性强,积云团分布更为零散。深对流云团的水平尺度为10-50 km,东部陆地最大,约为45 km,西北太平洋最小,约为30 km。陆地深对流云团水平尺度较海洋上大,且多尺度特征显著,应该与深对流云发生的复杂天气背景有关。积云团的垂直尺度范围为0.24-2 km,4个区域无明显差异。垂直尺度海洋深对流云团大于陆地云团,其中在南部海域地区最大,约为15 km,青藏高原最小,约为10 km。与陆地云团相比,海洋深对流云团表现为水平尺度更小、垂直尺度更大的中尺度对流体特征。   相似文献   

10.
基于CloudSat云分类资料的华北地区云宏观特征分析   总被引:4,自引:0,他引:4  
陈超  孟辉  靳瑞军  王兆宇 《气象科技》2014,42(2):294-301
利用2007年1月至2008年12月的CloudSat 2B-CLDCLASS-LIDAR云分类资料对华北地区(36°~42°N,110°~120°E)各类云在单层及多层云中的出现频率、平均高度及平均厚度进行统计分析。结果表明:华北地区单层云和多层云出现频率存在明显的季节变化,夏季最大,春秋次之,冬季最小。单层云的出现频率远高于多层云,单层云出现频率在春、夏、秋、冬4个季节分别为44.3%、46.1%、37.8%和32.8%,而多层云中2层云所占比例最大。单层云和多层云各云层平均高度、平均厚度分析显示,3层云上层云顶云底高度最高,3层云下层云顶云底高度最低,单层云平均厚度明显大于多层云,云层数越多,各云层的平均厚度越小。对不同类型云出现频率分析显示,卷云主要出现在单层云及多层云中、上层,高层云和高积云在单层云和多层云各云层中均占有一定的比例,层云主要出现在多层云下层,层积云、积云、深对流云主要出现在单层云及多层云下层,雨层云主要出现在夏季单层云中。卷云、高层云、高积云的平均高度及厚度在不同云系统中存在显著的差异。  相似文献   

11.
利用热带测雨卫星测雨雷达的10年探测结果,对夏季亚洲对流降水与层云降水雨顶高度分布、雨顶高度与地表降水强度的关系、雨顶高度日变化特征进行了研究。结果表明,青藏高原和中国东部平原的多数(70%以上)对流降水雨顶高度分布在8—12和5—10km,其他地区分布在5—9km;陆面对流降水雨顶平均高度高于洋面。洋面和陆面层云降水雨顶高度没有明显差异,多在5—8km。夏季亚洲浅对流降水比例少,而深厚对流主要出现在中国东部平原、西南、印度次大陆西部至伊朗高原东部地区,比例约40%。洋面和陆面的弱对流降水的雨顶平均高度在7—8km,弱层云降水相应的雨顶平均高度多小于7.5km;陆面约90%的强对流降水雨顶平均高度在9km以上,而强层云降水雨顶的平均高度通常不超过8.5km。夏季亚洲对流降水和层云降水的雨顶平均高度均随着地面平均降水率的增大而升高,两者遵从二次函数关系。对流降水及层云降水频次、强度和雨顶高度的日变化峰值分析表明,陆面这些参量的日变化强于洋面,并且三者的日变化基本同步。  相似文献   

12.
傅云飞  潘晓  刘国胜  李锐  仲雷 《大气科学》2016,40(1):102-120
本文利用热带测雨卫星(TRMM, Tropical Rain Measuring Mission)第七版逐日逐轨测雨雷达(PR, Precipitation Radar)及可见光和红外扫描仪(VIRS, Visible and Infrared Scanner)的融合数据集,研究了夏季青藏高原上降水类型的特征.统计结果表明第七版PR降水回波强度及降水率廓线资料(2A25)仍旧误判青藏高原上以层云降水为主(比例高达85%);以云顶相态定义的青藏高原降水类型统计表明,冰相云顶和冰水混合相云顶的降水分别占43%和56%;以降水回波顶高度定义的降水类型统计表明,深厚弱对流降水和浅薄降水分别占77%和22%,而深厚强对流降水仅占1%.空间分布的统计表明,冰相云顶降水和冰水混合相云顶降水的频次和强度自高原西部向高原东部和东南部增加,其降水回波顶高度自高原西、中部向东部降低.深厚强对流降水和浅薄降水的频次由西向东增加,而深厚弱对流降水频次分布是西少、北少、南多,高原南部比北部的深厚弱对流降水频次高出近1倍;深厚弱对流降水和浅薄降水的平均强度也表现了自高原西部、中部向东部的增大,而其降水回波顶高度分布则相反.总体上,夏季青藏高原降水频次和强度自西向东增多和增大,而云顶和降水回波顶高度则相反.  相似文献   

13.
杨波  孟鑫  杨磊  高太长 《气象科学》2019,39(1):62-69
为研究雷暴发展过程中的雷达回波特征,利用S波段双偏振多普勒天气雷达对南京地区的雷暴进行了观测研究,利用雷达回波资料、地面大气电场数据、闪电定位数据及探空资料对比分析了2014年一次冬季雷暴过程与夏季雷暴的雷暴回波特征差异。分析结果表明:冬季雷暴的对流发展高度明显低于夏季雷暴,持续时间短,水平尺度小,有较大比例的正闪;影响冬季雷暴与夏季雷暴的成雷对流高度差异的主要因素是环境温度差异,冬季雷暴在较低的高度上,具有较低的环境温度,更有利于雷暴起电;对流单体中,霰粒子的存在是雷暴的一项重要特征。  相似文献   

14.
李瑶瑶  施春华  郭栋 《气象科学》2023,43(6):723-735
利用CMIP6中的CESM2-WACCM模式逐日资料,预估未来2020—2099年SSP2-4.5、SSP3-7.0和SSP5-8.5三种不同排放情景下北半球对流层顶附近反气旋型Rossby波破碎(Anticyclonic Rossby Wave Breaking, AWB)的空间分布、发生频率、水平尺度、对称结构及其长期趋势。总体而言,未来四个季节AWB都在北太平洋和北大西洋有高频区。夏季北太平洋高频区发生频数显著多于北大西洋高频区,其他三季相反。两高频区在三种不同情景下,AWB物质经向输送通常以对称输送为主,但北太平洋区内冬、春、秋三季在SSP2-4.5情景下AWB物质向极净输送,北大西洋区内夏季在SSP2-4.5和SSP5-8.5情景下AWB物质向赤道净输送。未来的长期趋势显示,两高频区内各季节的AWB发生频数、水平尺度和物质向极输送主要呈减小(减少)趋势,且温室气体排放量越大,减小趋势越显著。在SSP5-8.5情景下,北太平洋夏季AWB总面积变化趋势为-365.5个1°×1°标准经纬度网格/10 a,该变化由区域内AWB平均尺度减小(-2.7个标准化网格/10 a)和发生频率减少(-1.9个/10 a)共同导致;该区域的向极输送率变化率为-0.016 5/10 a。北大西洋秋季AWB发生频数变化率为-2.3个/10 a,导致其总面积则以-440.4个标准化网格/10 a的速度减小。  相似文献   

15.
陈哲  李崇银 《大气科学》2006,30(6):1227-1235
对南海夏季风爆发前的风场和局地对流凝结加热强迫作用进行了合成分析, 表明南海夏季风爆发前局地对流凝结加热作用对与南海夏季风爆发密切相关的低频涡对的产生起着重要作用.然后, 从动力学的角度研究了带有外部热源强迫的赤道β平面上的Rossby波, 利用Gardner-Morikawa变换和摄动展开方法, 得到了热源强迫下描写赤道Rossby的mKdV方程, 进而得到了不同热源形式下切变气流中赤道非线性Rossby波的解析解.结果表明, 不同类型的热源对赤道Rossby波的结构起着非常重要的作用, 同时也为南海夏季风爆发前低频涡对的形成给出了一种动力学解释.  相似文献   

16.
基于NCEP资料的近30年夏季青藏高原低涡的气候特征   总被引:6,自引:3,他引:3  
基于NCEP/NCAR再分析资料并通过人工识别与天气图对比,本文对1981~2010年夏季高原低涡的气候特征进行了统计分析,对比研究了高原低涡高发年和低发年的大气环流场和低频分量场的特征,主要结果有:(1)近30年来夏季高原低涡平均每年生成32个,低涡发生频数呈现较明显的增多趋势,并具有较强的年际变化特征,低涡频数在2000年和2005年出现显著突变,在2000年由增多趋势转为减少趋势,在2005年又转为增多趋势,同时低涡频数具有显著的准5年、准9年和准15年周期振荡,6月生成的高原低涡呈减少趋势,而7月和8月生成的高原低涡均呈现增多趋势;(2)夏季高原低涡生成源地主要集中在西藏双湖、那曲和青海扎仁克吾一带,其中高原中部涡占50.8%,西部涡占27.0%,东部涡占22.2%,6月、7月和8月生成的高原低涡分别占夏季低涡总数的44.7%、29.9%和25.4%,高原低涡生成时绝大多数为暖性涡,占总数的90.7%。近30年来平均每年夏季有1.3个高影响高原低涡移出高原并在下游大范围地区产生强降水天气;移出的高原低涡以东移为主,占移出高原低涡的56.4%,而东北移和东南移的分别占移出高原低涡的20.1%和20.5%;(3)高原低涡高发年,低层的大气环流场和低频大气环流分量场均表现出较强的水平辐合及偏南气流,高层的青藏高压在高原主体范围内较气候态偏强;高原低涡低发年的情况则与之相反,伊朗高原上空的气旋、青藏高原低槽和高原南侧反气旋的配置对高原低涡的发生具有重要作用。  相似文献   

17.
祁连山地形云试验区自然地理和气候特征   总被引:5,自引:2,他引:3  
陈跃  陈乾  陈添宇  李宝梓 《气象科技》2008,36(5):575-580
对祁连山地形云民乐试验区的降水时空变化及夏季降水、云和风向的日变化进行分析发现,试验区降水随海拔升高由北向南递增,在祁连…北坡实测最大年降水量511 mm,出现在海拔2500 m的瓦房城.全年7月降水最多,6~8月降水量占年降水量的57%.夏季风向日变化明显,以山谷环流为主,白天多为NW风.夜间为SSE风,午后谷风使水汽向祁连山北坡汇集,气流抬升形成对流云,故山区16:00~20:00降水频率最高,有两个雨峰分别出现在午后和半夜,与低云量和积云、积雨云的日变化对应.近50年的气候变化表明,年降水量呈上升趋势,春、夏、秋季降水量均为上升趋势,冬季则下降.1957~2004年有两个枯水期,两个丰水期,1998年至今处于丰水期.年降水量和年径流量最大熵谱图分析表明,4.8年和3年周期较显著,民乐年降水量和莺落峡年径流量熵谱图对应较好,还存在9年的振动周期.  相似文献   

18.
利用热带测雨卫星TRMM搭载的测雨雷达(PR)1998-2012年的观测资料,研究了合肥地区夏季(6、7、8月)不同类型降水的降水强度和频次的水平空间分布、降水垂直结构、日变化特征以及气候变化等特征,揭示了城市化效应造成城市及其周边区域降水特征在时空上的分布差异。研究结果表明,(1)主城区对流和层云降水强度低于周边区域,对流降水频次也低于周边区域,但层云降水频次则相反。可见城市化发展是改变降水的空间分布的因素之一,且对不同的降水类型空间分布影响不同。(2)主城区降水回波信号高度高于周边区域,而降水强度低于周边区域,表明城市效应促进降水云发展而未造成降水强度增强。(3)合肥地区对流和层云降水的强度和频次日循环存在时空分布不均匀性,其中城区的对流降水强度和频次日循环与城市热岛效应日循环具有一致性。总体来看,城市化对局地降水强度影响较大,而对局地降水频次的总体影响不是很明显。(4)通过降水气候变化分析表明,城区两种类型降水强度和频次均呈逐年下降趋势,周边区域降水强度呈不显著上升趋势,降水频次呈逐年下降趋势,其中层云降水频次下降趋势较显著。城市化进程使得城市及其周边区域降水不均匀性逐年增强。极端降水空间分布特征分析表明,城市周边区域强降水频次高于主城区,尤其在城市的下风区高出主城区75%;而周边区域弱降水发生的频次低于主城区,城市下风区最低,低于主城区约18%。  相似文献   

19.
《Atmospheric Research》2010,95(4):652-662
The article presents an analysis of heavy short-term precipitation for the warm part of the year in the Czech Republic (CR). Precipitation data are prepared for the years 2002–2007 with a horizontal resolution of 1 km and a temporal resolution of 1 h. A method merging radar and daily rain gauge measurements is applied to calculate basic hourly precipitation. Two types of 1-, 2-, 3-, and 6-h precipitation data, derived from the basic hourly precipitation, are investigated from the viewpoint of precipitation–altitude relationships and areal distributions of heavy precipitation. The first type of data consists of sums of hourly precipitation, where the summation is performed for all data regardless of whether the summed hourly precipitation is a part of a longer precipitation event or if some hours are without precipitation. The second type of data contains temporally bounded precipitation events. This type predominantly includes convective precipitation. The results show that for both types of data, 1-h precipitation with high rain rates is without apparent dependence on altitude. For the first type of data and for precipitation durations of 2 and 3 h, the impact of altitude on precipitation maps can be identified for low and high rain rates. The impact of mountains is evident for the 6-h precipitation because it includes large scale precipitation events. However, the second type of data does not depend on altitude for heavy precipitation. Heavy precipitation of the second type shows, especially for 6-h, an increased frequency of occurrence in the south to central CR.  相似文献   

20.
根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因.得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势.其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降.地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点.高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势.地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后.夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当.地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强.地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变.根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期.低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变.夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关.因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期.本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号