首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
研究了联合BDS/GPS观测数据基于球冠谐函数的中国区域电离层建模,并精确估计了北斗卫星和接收机DCB。联合解算得到的GPS卫星DCB相对CODE精度优于0.2 ns,GPS接收机DCB相对CODE精度优于1 ns;联合解算得到的中国区域上空VTEC相对CODE事后产品的精度可达2~3 TECU。  相似文献   

2.
根据高精度卫星导航和电离层活动监测的需要,利用全球238个GPS基准站的双频实测数据,通过建立球谐函数模型的同时解算电离层电子含量以及GPS与GLONASS卫星DCB及其相应的接收机DCB;将其结果与CODE、IGS分析中心的结果进行比较分析,表明该方法建立的模型是可靠的,其GPS和GLONASS卫星DCB相对于CODE精度优于0.1ns,相对于IGS精度优于0.2ns,其GPS测站DCB和GLONASS测站DCB相对于CODE和IGS精度优于1ns,垂直总电子含量相对CODE和IGS精度优于3TECU,组合结果精度高于组合前。  相似文献   

3.
《测绘科学》2020,(1):48-53
针对电离层延迟改正对单频接收机用户带来误差较大的问题,该文基于球谐函数借助山东区域CORS双频观测数据建立山东区域电离层模型,并对硬件延迟偏差(DCB)和电子含量进行可靠性、稳定性分析,进一步使用单频精密单点定位(PPP)验证山东区域电离层模型的有效性。实验结果表明:测站DCB解算精度稳定在0.4ns内,解算卫星DCB与欧洲定轨中心(CODE)的偏差总体稳定在0.5ns内,区域电离层模型与CODE解算VTEC差值的均方根为1.22TECU,STD为0.93TECU,对山东区域单频PPP而言,山东区域电离层模型比CODE发布全球电离层模型在N、E、U方向精度明显提高。同时,建立的山东区域电离层模型从时间分辨率、空间分辨率上均优于CODE中心发布全球电离层模型。  相似文献   

4.
为提高区域电离层模型和导航定位服务的精度,利用河北省连续运行参考站系统(CORS) 6个基准站的GPS卫星观测数据进行区域电离层建模和接收机差分码偏差(DCB)估计,并引入中国科学院(CAS)发布的电离层产品内插得到的垂直总电子含量(VTEC)进行区域电离层模型精度验证。实验结果表明,估计的单日GPS卫星DCB与产品值精度相当,偏差控制在0.5 ns以内;河北省CORS站GPS系统接收机DCB稳定性较好,5 d的标准偏差均小于0.1 ns;利用河北省CORS建立的区域电离层TEC在地磁平静期与磁暴期均与CAS产品值具有较高的一致性,TEC偏差控制在2 TECU以内。河北省区域电离层模型能有效监测电离层TEC在不同地磁状态下的时空变化,提高区域导航定位服务水平。  相似文献   

5.
基于球谐函数区域电离层模型建立   总被引:1,自引:0,他引:1  
利用GPS双频观测数据建立高精度、准实时的区域电离层总电子含量(TEC)模型是电离层研究的一个重要手段。文中探讨IGS观测站数据结合4阶球谐函数建立区域电离层格网模型的方法,并对硬件延迟(DCB)和TEC建模结果的可靠性进行分析,结果表明,DCB解算精度在0.4ns以内,TEC内外精度优于1.4TECU(1TECU=1016电子数/m2)和1.5TECU,满足导航定位中电离层改正的需要。  相似文献   

6.
采用中国测绘科学研究院iGMAS分析中心数据,建立全球电离层延迟模型,进行精度分析。结果表明,全球电离层球谐函数建模结果与CODE差值基本在0~4 TECU之间。大陆地区精度最高,基本在1 TECU以内;海洋地区以及南半球部分地区精度较差,最大能达到4 TECU;各卫星C1-P2的DCB结果与CODE差值在0左右波动,大部分在1.5 ns以内,说明本文的GPS/GLONASS卫星系统DCB精度与CODE相当。  相似文献   

7.
根据高精度卫星导航和电离层活动监测的需要,特别是中国北斗系统的运营,利用陆态网络200余个GPS基准站的双频实测数据,通过建立低阶球谐函数模型同时解算电离层电子含量、GPS卫星DCB;将其结果与CODE分析中心的结果进行比较.分析表明,该方法建立的模型是可靠的,其GPS卫星DCB相对于CODE精度优于0.3ns,垂直总电子含量相对CODE精度优于3TECU.  相似文献   

8.
电离层是地球空间的重要组成部分,电离层延迟是全球导航卫星系统(global navigation satellite system,GNSS)数据处理的重要误差源,电离层的影响主要表现为地面站接收到的卫星载波和伪距信号的附加时延效应,最大可达几十米,精确的电离层模型可以有效提高GNSS单频数据处理的精度。利用GNSS观测值研究电离层,一般采用无几何距离组合的码和相位观测值,使用相位平滑伪距方法得到平滑电离层观测值,但是该方法容易受到伪距多路径和观测噪声的影响,导致电离层估计不准确。因此,先基于非组合精密单点定位(precise point positioning,PPP)提取电离层,利用国际GNSS服务的轨道、钟差等产品,有效减少待估参数个数,提高电离层延迟的估计精度;再使用纬度差和太阳时角差的多项式拟合进行区域电离层建模。利用某省连续运行参考站系统数据提取了天顶方向总电子含量信息进行建模,与PPP解算结果进行比较,在测站天顶方向上的模型值和解算值差异较小(除个别卫星外),可达到2 TECU左右。  相似文献   

9.
为探究差分码偏差(DCB)对准天顶卫星系统(QZSS)伪距单点定位(SPP)的影响,推导了QZSS伪距单点定位时间群延迟(TGD)和DCB改正模型,并选取6个MGEX (Multi-GNSS Experiment)测站连续7 d的观测数据按照两种不同方案进行实验.结果表明:DCB产品月稳定度较好,无明显波动,各颗卫星月稳定度优于0.2 ns,与TGD互差值优于2.5 ns;TGD/DCB改正对SPP精度影响为米级,经TGD/DCB改正后水平方定位精度可从4~9 m提升至3~6 m,高程方向可从7~9 m提升至5~7 m,提升率为10%~46%.可见DCB改正对单点定位精度影响较大,在定位解算中不可忽略.  相似文献   

10.
多系统融合全球电离层建模研究   总被引:2,自引:0,他引:2  
近年来,我国BDS的建设和应用为GNSS电离层研究带来了新的机遇和挑战。本文采用中国测绘科学研究院i GMAS分析中心数据,构建了三系统融合全球电离层球谐函数模型,并对结果进行分析。研究表明:除去精度较差的海洋区域,在大陆地区,多系统融合全球电离层建模结果能较精确地表达电离层VTEC;对比三系统差分码偏差DCB的精度统计结果,GPS卫星系统C1P2码偏差均小于1 ns,大部分在0.5 ns以内,精度最高;GLONASS卫星系统C1P2码偏差均小于2 ns,精度比GPS系统略低;BDS卫星系统B1B2码偏差均小于1 ns,精度比GLONASS系统略高,但不如GPS系统稳定,码偏差随年积日变化较大,可能是BDS系统星座结构不完善的原因。  相似文献   

11.
确定卫星与接收机信号延迟偏差的新方法及其应用   总被引:6,自引:1,他引:5  
单频GPS接收机用户通常需要进行电离层延迟改正,电离层延迟改正量通常来源于电离层延迟改正模型或双频GPS基准站信息,后者即是利用双频GPS观测值估计电子含量总数,求解电离层延迟改正量。利用双频GPS观测值估计电子含量总数,一个关键总是是去掉卫星与接收信号延迟偏差。  相似文献   

12.
Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.  相似文献   

13.
李昕  郭际明  周吕  覃发超 《测绘学报》2016,45(8):929-934
提出了一种精确估计区域北斗接收机硬件延迟(DCB)的方法。该方法不需要传统复杂的电离层模型,在已知一个参考站接收机硬件延迟的条件下,利用正常情况下电离层延迟量和卫星-接收机几何距离强相关这一特点,采用站间单差法来精确估计区域内BDS接收机的硬件延迟。试验结果表明,该方法单站估计的单站北斗接收机连续30d的硬件延迟RMS在0.3ns左右。通过GEO卫星双频观测值扣除已知卫星DCB和本文方法估计的接收机DCB,计算对应穿刺点一天的VTEC并和GIM格网内插结果并进行比对分析,二者大小和变化趋势均符合较好,进一步验证了本文提出的方法具有可靠性。  相似文献   

14.
Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.  相似文献   

15.
高精度的电离层模型对于提高导航卫星系统的定位精度具有重要意义。低轨卫星的快速发展为建立高精度的电离层模型提供了新的契机。基于仿真数据模拟获得2017年1月1日—30日LEO(low earth orbit)和GNSS(global navigation satellite system)卫星观测数据,星座类型包括60、96、192和288颗卫星,以非洲区域为例,利用该数据研究GNSS和LEO卫星穿刺点的覆盖情况和联合建模精度。结果表明:加入LEO卫星后,穿刺点分布改善明显,能够大幅度提高穿刺点密度;单颗低轨卫星穿刺点的范围比GNSS卫星大,LEO卫星的高度角和方位角变化明显;随着低轨卫星数量的增加,融合建模的精度也随之提高;在12:00时东经30°不同纬度范围内,单GNSS建模和GNSS+288 LEO建模差值最大为-1.6 TECU(total electron content unit);随着建模时长的增加,融合建模结果和单GNSS结果差值逐渐变小。  相似文献   

16.
差分码偏差(DCB)是电离层建模与导航定位授时的主要误差源,北斗多频多通道信号衍生出一系列新的DCB。本文首先分析了北斗三号卫星的码观测值组合及可估的DCB类型,建立了北斗三号卫星多频码偏差估计的数学模型,利用IGS实测数据首次估计得到了22种不同类型的北斗DCB。在此基础上,全面比较分析了各类DCB的内符合精度、外符合精度及月稳定度。结果表明,北斗三号卫星各类DCB的闭合差基本都在0.2 ns以内,具有较好的内符合精度;估计结果与中科院(CAS)、德国宇航中心(DLR)提供的DCB产品具有一致性,与CAS的6种DCB偏差基本在0.1 ns以内,与DLR的4种DCB偏差基本在0.2 ns以内;由于误差传递的影响,通过线性转换得到DCB值的精度和可靠性不及DCB直接估计量;北斗三号卫星各类DCB的月平均标准差为0.083 ns,具有较好的中长期稳定性;相较于北斗二号卫星,北斗三号卫星的DCB稳定性相对更优。  相似文献   

17.
The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth’s ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than \(50^\circ \) . The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12  % can be achieved. The accuracy directly beneath the DORIS satellites’ ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.  相似文献   

18.
为了分析单站区域电离层总电子含量(total electron content,TEC)模型的适用范围和精度,基于2~15阶次球谐函数,分别建立了欧洲区域16个单站区域电离层TEC模型,生成了区域格网TEC,并与欧洲定轨中心(Center for Orbit Determination in Europe,CODE)、...  相似文献   

19.
The differential code bias (DCB) in satellites of the Global Navigation Satellite Systems (GNSS) should be precisely corrected when designing certain applications, such as ionospheric remote sensing, precise point positioning, and time transfer. In the case of COMPASS system, the data used for estimating DCB are currently only available from a very limited number of global monitoring stations. However, the current GPS/GLONASS satellite DCB estimation methods generally require a large amount of geographically well-distributed data for modeling the global ionospheric vertical total electron content (TEC) and are not particularly suitable for current COMPASS use. Moreover, some satellites with unstable DCB (i.e., relatively large scatter) may affect other satellite DCB estimates through the zero-mean reference that is currently imposed on all satellites. In order to overcome the inadequacy of data sources and to reduce the impact of unstable DCB, a new approach, designated IGGDCB, is developed for COMPASS satellite DCB determination. IGG stands for the Institute of Geodesy and Geophysics, which is located in Wuhan, China. In IGGDCB, the ionospheric vertical TEC of each individual station is independently modeled by a generalized triangular series function, and the satellite DCB reference is selected using an iterative DCB elimination process. By comparing GPS satellite DCB estimates calculated by the IGGDCB approach based on only a handful (e.g., seven) of tracking stations against that calculated by the currently existing methods based on hundreds of tracking stations, we are able to demonstrate that the accuracies of the IGGDCB-based DCB estimates perform at the level of about 0.13 and 0.10?ns during periods of high (2001) and low (2009) solar activity, respectively. The iterative method for DCB reference selection is verified by statistical tests that take into account the day-to-day scatter and the duration that the satellites have spent in orbit. The results show that the impact of satellites with unstable DCB can be considerably reduced using the IGGDCB method. It is also confirmed that IGGDCB is not only specifically valid for COMPASS but also for all other GNSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号