首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article characterizes the spatial and temporal current variations, in the subtidal and tidal ranges, during the rainy and dry seasons, at the continental shelf off the Jaguaribe River, through measurements of continuous current field data from an acoustic Doppler current profiler (ADCP) mooring during 124 days, from June 12 to October 14, 2009. To support this dataset, we collected corresponding data from a meteorological station located at the estuary. The spatial variation showed that highest current speeds occur near the coast, with an offset of a NNW coastal jet, decreasing intensity, monotonically, towards offshore up to 0.1 ms?1. In the rainy season, small inversions of the wind field were observed, lasting 2 to 3 days on average and were accompanied by the direction of surface currents only. In the dry season, the period of reversal of wind fields and currents lasted 14 and 35 h, respectively. The analysis of empirical orthogonal functions in rainy and dry seasons showed that the continental shelf is predominantly barotropic, where the second and third modes explained only 7% of the total variance, during the dry season. The tidal currents are more intense in the direction normal to the coast, showing a semidiurnal tidal regime. Energy distribution between tidal currents and currents of longer periods showed that for the component parallel to bathymetry, subtidal frequency currents are dominant, contributing to more than 70% of the variance. For the normal component to the coastline bathymetry, there is a significant increase of power concerning tidal currents, at all depths, so they contribute with about 55% of the total variance.  相似文献   

2.
This paper presents the development of a multiple‐station neural network for predicting tidal currents across a coastal inlet. Unlike traditional hydrodynamic models, the neural network model does not need inputs of coastal topography and bathymetry, grids, surface and bottom frictions, and turbulent eddy viscosity. Without solving hydrodynamic equations, the neural network model applies an interconnected neural network to correlate the inputs of boundary forcing of water levels at a remote station to the outputs of tidal currents at multiple stations across a local coastal inlet. Coefficients in the neural network model are trained using a continuous dataset consisting of inputs of water levels at a remote station and outputs of tidal currents at the inlet, and verified using another independent input and output dataset. Once the neural network model has been satisfactorily trained and verified, it can be used to predict tidal currents at a coastal inlet from the inputs of water levels at a remote station. For the case study at Shinnecock Inlet in the southern shore of New York, tidal currents at nine stations across the inlet were predicted by the neural network model using water level data located from a station about 70 km away from the inlet. A continuous dataset in May 2000 was used for the training, and another dataset in July 2000 was used for the verification of the neural network model. Comparing model predictions and observations indicates correlation coefficients range from 0·95 to 0·98, and the root‐mean‐square error ranges from 0·04 to 0·08 m s?1 at the nine current locations across the inlet. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The construction of a Giant Sea Wall (GSW) complex in Jakarta Bay has been proposed to protect Jakarta against flood in the Master Plan for National Capital Integrated Coastal Development (NCICD). However, these large-scale hydraulic structures could significantly change the tidal dynamics in Jakarta Bay. This research investigates the potential impacts of a GSW on the tidal dynamics, including tides, currents, and residual currents in Jakarta Bay using a validated numerical model (Finite Volume Coastal Ocean Model (FVCOM)). Results show that the bay is diurnal with a maximum tidal range of ~0.9 m. The flow is mainly in an east-west direction with a maximum depth-mean current speed of up to 0.3 ms?1. The construction of a GSW would modulate the tidal dynamics by changing the bathymetry, tidal prism, wind effect, and tidal choking effect in the bay. The maximum tidal range would be slightly increased due to the reduced tidal prism of the bay and the increased tidal choking effect. The current would penetrate into the west reservoir through the gates and channels between the artificial islands, with peak speed jets appearing at the gates (~0.3 ms?1), due to tidal choking. A similar peak current speed appears near the right wing of the GSW due to the pressure gradient would be created by the wing of the GSW. Closing the gates would mainly affect the currents inside the west reservoir. The residual current would be slightly increased after the construction of the GSW. An eddy would be formed at the bottom level near the right wing of the GSW. The direction of the residual current is landward instead of seaward at the surface level outside the GSW. The impact of wind on surface currents would be much reduced due to the decreased water surface area. Although this study is site specific, the findings may have a wider applicability to the impacts of large-scale hydraulic structures on tidal dynamics in open-type bays.  相似文献   

4.
The rapid expansion of urbanization along the world’s coastal areas requires a more comprehensive and accurate understanding of the coastal ocean. Over the past several decades, numerical ocean circulation models have tried to provide such insight, based on our developing understanding of physical ocean processes. The systematic establishment of coastal ocean observation systems adopting cutting-edge technology, such as high frequency (HF) radar, satellite sensing, and gliders, has put such ocean model predictions to the test, by providing comprehensive observational datasets for the validation of numerical model forecasts. The New York Harbor Observing and Prediction System (NYHOPS) is a comprehensive system for understanding coastal ocean processes on the continental shelf waters of New York and New Jersey. To increase confidence in the system’s ocean circulation predictions in that area, a detailed validation exercise was carried out using HF radar and Lagrangian drifter-derived surface currents from three drifters obtained between March and October 2010. During that period, the root mean square (RMS) differences of both the east–west and north–south currents between NYHOPS and HF radar were approximately 15 cm s?1. Harmonic analysis of NYHOPS and HF radar surface currents shows similar tidal ellipse parameters for the dominant M2 tide, with a mean difference of 2.4 cm s?1 in the semi-major axis and 1.4 cm s?1 in the semi-minor axis and 3° in orientation and 10° in phase. Surface currents derived independently from drifters along their trajectories showed that NYHOPS and HF radar yielded similarly accurate results. RMS errors when compared to currents derived along the trajectory of the three drifters were approximately 10 cm s?1. Overall, the analysis suggests that NYHOPS and HF radar had similar skill in estimating the currents over the continental shelf waters of the Middle Atlantic Bight during this time period. An ensemble-based set of particle tracking simulations using one drifter which was tracked for 11 days showed that the ensemble mean separation generally increases with time in a linear fashion. The separation distance is not dominated by high frequency or short spatial scale wavelengths suggesting that both the NYHOPS and HF radar currents are representing tidal and inertial time scales correctly and resolving some of the smaller scale eddies. The growing ensemble mean separation distance is dominated by errors in the mean flow causing the drifters to slowly diverge from their observed positions. The separation distance for both HF radar and NYHOPS stays below 30 km after 5 days, and the two technologies have similar tracking skill at the 95 % level. For comparison, the ensemble mean distance of a drifter from its initial release location (persistence assumption) is estimated to be greater than 70 km in 5 days.  相似文献   

5.
Abstract

Results are presented of calculations on the generation of residual vorticity by tidal currents over the bottom topography of the Southern Bight of the North Sea. A typical order of magnitude is 10?6 to 10?7 s ?1. This is compared with current measurements on calm days, when similar magnitudes are found. At windspeeds less than about 5 m/s tidal generation of residual vorticity is important; at higher windspeeds wind effects begin to dominate. Our results are relevant in understanding the spatial variability of residual currents, because a non-zero vorticity implies the existence of horizontal gradients in the residual current field.  相似文献   

6.
In this paper, high-resolution wave, current and water depth fields derived by marine X-Band radar are presented for a coastal region of extreme tidal currents in the presence of inhomogeneous bathymetry at the south coast of New Zealand’s North Island. The current and water depth information for the presented location covers an area of approximately 13 km2 with a spatial resolution of 225 m and an update rate of 3 min. The sea state data provides a spatial representation of coastal effects like wave shoaling and refraction forced by bathymetry and current interaction. The near-surface current measurements about 3 km off the coast show expected tidal current pattern with maximum northwest/southeast current of 1.5–2 m/s alongshore. This is in agreement with currents from the RiCOM hydrodynamic model. The spatial resolution of the observed current field exhibits in addition small-scale current features caused by the influence of the local bathymetry. These data demonstrate the insight to be gained in complex, high-energy coastal situations through the use of high-resolution remote sensing techniques.  相似文献   

7.
An idealized numerical study of the influence of a tidal flow around an island has been undertaken with ROMS. The study focusses on coastal island wakes which are mainly controlled by elliptical tidal current flows on shallow shelves. This model is typical of some isolated continental shelf islands. The model is forced by a semi-diurnal barotropic inertia gravity wave imposed on the four open boundaries of a rectangular domain and its propagation results in an elliptical tidal flow within the domain in which the circular island lies. The influence of the surrounding island bathymetry and of the ellipse shape has been studied both in two and three dimensions. In the island vicinity, the residual circulation patterns over a tidal period show alongshore flow divergence along the major axis and convergence along the minor axis. A thin tidal ellipse (i.e. with a large ratio between major and minor axes) leads to strong eddy activity periods in the lee of the island during the flood and ebb phases, with eddy dissipation phases in between. By contrast, an almost round ellipse (axis ratio nearly 1) leads to vorticity filaments which continuously progress around the island without eddy shedding. The presence of a topographic slope in the vicinity of the island strengthens the eddy activity. This study suggests that the tidal current rotation favors the development of the eddy rotating in the same direction and weakens the development of the second eddy. In three dimensions with a surrounding bathymetry, an intense upwelling occurs in a large area in the lee of the island and the vertical velocities are stronger with thinner ellipses. With a flat bottom the vertical motions are almost fully generated by convergence and divergence of the secondary flow. With a varying bottom topography, the vertical motions come from a combination of this mechanism with convergence and divergence of the depth averaged flow.  相似文献   

8.
“The Ekman Drain”: a conduit to the deep ocean for shelf material   总被引:1,自引:1,他引:0  
A long (167 days) acoustic Doppler current profiler time series from the European continental slope west of Scotland has been analysed to investigate the influence of bathymetric steering on the slope current and the extent of down-slope transport in the bottom boundary layer. Within an interior region between the surface and bottom boundary layers, the direction of the flow is found to be remarkably consistent as required by the Taylor-Proudman theorem for geostrophic flow. The mean value of this interior flow direction is taken to be the effective direction of the bathymetry in controlling the geostrophic flow and so defines the rotation of coordinates required to determine along and cross-flow transports. Within a bottom boundary layer (BBL) of thickness ~100 m, the direction of the flow was deflected increasingly to the left with the mean veering angle ~12.5° at 12 mab and a down-slope speed of 2.6 cm s?1. The corresponding integrated transport (the “Ekman drain”) had an average value of ~1.6 m2 s?1 over the full observation period. This down-slope flow was significantly correlated (at 0.1 % level), with the stress applied by the along-slope flow although with considerable scatter (r.m.s. ~1 m2 s?1) which suggests the influence of other forcing mechanisms. Combining the BBL volume transport with an estimate of the mean concentration of suspended particulate material indicates an annual down-slope flux of 3.0?±?0.6 tonnes m?1 year?1, of which ~0.36?±?0.1 tonnes m?1 year?1 is carbon. Biogeochemical measurements indicate that the carbon flux in the Ekman drain predominates over settlement of organic material through the water column over the slope and provides for relatively rapid delivery of material to deep water.  相似文献   

9.
The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115?×?106?m3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35?min, giving peak pyroclastic flow flux of 66?×?103?m3?s?1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7?km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40?km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200?m of topography and eroded up to 20?cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210?×?106?m3) Soufrière Hills dome collapse in July 2003.  相似文献   

10.
Observations of internal wave current fluctuations at a site on the European continental shelf are described. These have revealed current ‘pulses’ of regular tidal (M2) phase which may be associated with internal tides generated at the shelf-edge. Current ‘pulses’ have been observed with amplitudes of 30 to 40 cm s?1 superimposed on peak spring tidal currents of the order 60 to 70 cm s?1. The measurements have shown that these fluctuations extended throughout the bottom mixed layer to within at least 2 m of the sea bed where they may play an important role in modifying sediment transport rates.  相似文献   

11.
Observations of currents aimed to study the flow near a spawning aggregation reef, Gladden Spit off the coast of Belize, reveal unusually strong currents on 19–20 October 2009 (the current speed was over 1?m?s?1, when the mean and standard deviation are 0.2?±?0.12?m?s?1). During this short time, the water level was raised by 60–70?cm above normal in one place, but lowered by 10–20?cm in another location just 2?km away. The temperature dropped by over 2°C within a few hours. Analyses of local and remote sensing data suggest that a rare combination of an offshore Caribbean cyclonic eddy, a short-lived local tropical storm, and a Spring tide, all occurred at the same time and creating a “perfect storm” condition that resulted in the unusual event. High-resolution simulations and momentum balance analysis demonstrate how the unique shape of the coral reef amplified the coastal current through nonlinear flow–topography interactions. The suggested mechanism for the water level change is different than the classical wind-driven storm surge process. The study has implications for the influence of external forcing on mixing processes and physical–biological interactions near coral reefs.  相似文献   

12.
Extensive mud deposits superimposed on the predominantly sandy inner continental shelf adjacent to the Patos Lagoon estuary, indicates that the Lagoon is a potential source of fine sediments to the coastal sedimentary system. The lagoon is large and shallow, and the water movement is mainly controlled by wind-driven set-up and set-down. The mean river inflow is around 2000 m3 s−1, although peak flow rates exceeding 20,000 m3 s−1 have been observed during El Niño periods. Though the tidal elevations are small, tidal velocities in the lagoon's inlet can be significant due to the large extension of the backwaters. Moreover, significant exchange flows can be generated between the estuary and coastal area due to barotropic pressure gradients established as a function of wind and freshwater discharge. The predominant net flow is seawards, but opposite near-bed flows due to pronounced vertical salinity stratification can also be observed. The coastal area is characterized by small tidal effects, large scale ocean circulation, wind-induced residual flows and wave-driven currents, where the waves originate from swell or are locally generated.  相似文献   

13.

A very high-resolution modelling configuration was created for the estuary of Baía de Todos os Santos – BTS, Brazil (300 to 400 m), and adjacent coastal waters (600 to 1200 m). The adoption of a multi-corner domain approach allowed the variable spatial resolution required to resolve the shelf, the bay and their interactions. Seven years were simulated using realistic oceanic, atmospheric and riverine forcing. Model validation was done against observations showing the model skill to reproduce the thermohaline field, the tidal currents, as well as the variability of the free surface at tidal and sub-tidal time scales. The results provide the first representation of the tidal wave propagation along the bay, in terms of maps of amplitudes, phases and ellipses of the barotropic currents for the main tidal constituents. By analysing the residual currents at different depths, in terms of averages over the simulation period, several prominent structures were identified and named: (i) Salvador eddy (up to 0.2 m s−1); (ii) St Antonio current (up to 0.45 m s−1); (iii) Salvador current (up to 0.5 m s−1); (iv) Itaparica eddy (up to 0.2 m s−1); (v) Ilha dos Frades southern eddy (up to 0.1 m s−1); and (vi) Ilha dos Frades northern eddy (up to 0.2 m s−1). The model set-up proved to be highly efficient and robust simulating the BTS shelf-estuary region and such an approach may be suitable to other estuarine systems.

  相似文献   

14.
Observations at 8 sites in the outer central Great Barrier Reef show M2, S2, K1, and O1 tidal currents flow directly off-shelf (northeast), when the corresponding tide at Townsville is at zero height and falling, with typical amplitudes of 12, 6, 3, and 2 cm s?1. On the slope (at 300 m depth), the vertically averaged long-shelf component was small. On the shelf, the eccentricity of the tidal ellipses decreases shoreward and the tidal ellipses rotate anticlockwise. The major axes of the tidal ellipses tilt left of cross-shelf, especially for the diurnal constituents. There is satisfactory agreement between the observed and modelled cross-shelf currents. The long-shelf velocity is sensitive to the long-shelf changes in amplitude and phase of the tide heights and high quality tidal data for open boundary conditions will be required if numerical models are to model these currents satisfactorily.  相似文献   

15.
An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1–1 m s − 1 and maximum water depth, 10–60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolis-induced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise density-induced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries.  相似文献   

16.
Terrain-following ocean models are being used to simulate baroclinic tides and provide estimates of the tidal fields for circulation and mixing studies. These models have successfully reproduced elevations with most of the remaining inaccuracies attributed to topographic errors; however, the replication of barotropic and baroclinic velocity fields has not been as robust. Part of the problem is the lack of an adequate observational dataset in the simulated regions to compare the models. This problem was addressed using a dataset collected during the Flow over Abrupt Topography initiative at Fieberling Guyot. To evaluate the capability of the Regional Ocean Model System (ROMS) to simulate baroclinic tidal velocities, the combined tides for four constituents, M2, S2, K1, and O1, were modeled over Fieberling Guyot. Model inputs, numerical schemes, and parameterizations were varied to improve agreement with observations. These included hydrography, horizontal resolution, and the vertical mixing parameterization. Other factors were evaluated but are not included in this paper. With the best case, semidiurnal baroclinic tides were well replicated with RMS differences between the model estimates and the observations of 1.85 and 0.60 cm s−1 for the major axes of the tidal ellipses for M2 and S2, respectively. However, diurnal K1 baroclinic tides were poorly simulated with RMS differences of 4.49 cm s−1. In the simulations, the K1 baroclinic tides remained bottom-trapped unlike the observed fields, which had free waves due to the contribution of the mean velocity to the potential vorticity. The model did not adequately simulate the mean velocity, and the K1 tides remained trapped. A resolution of 1 km most accurately reproduced the major axes and mean velocities; however, a 4-km resolution was sufficient for a qualitative estimate of where baroclinic tidal generation occurred. Nine vertical mixing parameterizations were compared. The vertical mixing parameterization was found to have minor effects on the velocity fields, with most effects occurring over the crown of guyot and in the lower water column; however, it had dramatic effects on the estimation of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations could be eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were Mellor–Yamada and three generic length scale schemes.  相似文献   

17.
The influence of sea level variations due to tides and wave setup on turbulent kinetic energy (TKE) was observed at a point source submarine groundwater discharge in a fringing coral reef lagoon. Tidal and wave setup variations modulated speed, TKE, TKE dissipation, and water temperature and salinity at the buoyant jet. The primary driver of jet TKE and speed variations was tides, while wave setup was a minor contributor. An inverse relationship between surface elevation and TKE was explained with an exponential equation based on sea level variations. During low tides, peak jet speeds (up to 0.3 m s?1) and TKE per unit mass (up to 0.4 m2 s?2) were observed. As high tide approached, the jet produced minimum TKE of ~0.003 m2 s?2 and TKE dissipation ranged from 2 to 8×10?4 m2 s?3. This demonstrated the sensitivity of the jet discharge to tides despite the small tidal range (<20 cm). Jet temperatures and salinities displayed semidiurnal oscillations with minimum salinity and temperature values during maximum discharge. Jet salinities increased throughout low tides while temperatures decreased. This pattern suggested the jet conduit was connected to a stratified cavity within the aquifer containing cool fresh water over cool salty water. As low tides progressed, jet outflow increased in salinity because of the mixing within the conduit, while lower jet temperatures suggested water coming from further or deeper in the aquifer. The presence of such a cavity has been recently confirmed by divers.  相似文献   

18.
Near-bottom currents, light transmission and scattering, and bottom pressure were measured with GEOPROBE tripods and vector-averaging current meters during June 1979 to April 1980 on the central shelf 10 km west of the Russian River, California. The instruments were located on the mid-shelf mud belt composed of bimodal sandy clayey silts contributed principally by the Russian River. During the summer season of persistent northwesterly, upwelling-favorable winds, the average and maximum current speeds 5 m above the bottom were 11 and 31 cm s?1, respectively. The mean (subtidal) flow at 5 m above bottom was poleward and slightly offshore at about 6 cm s?1. The strongest wave-generated bottom currents were about 10 cm s?1, but oscillatory velocities > 5 cm s?1 were infrequent. Suspended-matter concentrations, derived from the optical data at 1.9 m above the bottom, ranged from 1 to 6 mg l?1. The optical data show that the currents and waves were generally below threshold levels for sediment erosion through the summer. In contrast, during the autumn and, particularly, the winter months, the average and maximum concentrations of suspended matter increased substantially. The increases were primarily caused by larger waves from distant storms and short intervals of strong currents associated with local storms and, secondarily, by the large seasonal flow of the Russian River. Wind-driven and wave-generated bottom currents were as large as 37 and 45 cm s?1, respectively, during local storms in December 1979 and February 1980. Suspended-matter concentrations averaged about 7 mg l?1 during non-storm winter periods, but increased to nearly 150 mg l?1 during a December storm. Estimates of suspended-matter flux near the bottom show that the local winter storms, which had a combined duration of about 12 days, could account for 30 to 50% of the total annual suspended-sediment transport at the mid-shelf site. Although intervals of large swell were at times superimposed on southward advective currents, the major sediment-transport events were caused by strong southerly winds that produced poleward bottom currents with a significant offshore component. The primary aspects of the distribution of modern sediments on this shelf are in good agreement with the observed poleward transport.  相似文献   

19.
Residual currents in eastern Long Island Sound (LIS) are investigated using direct velocity measurements from an acoustic Doppler current profiler mounted on a ferry. Circulation at the site has major influence on exchange of water and water-borne materials between LIS and the coastal ocean. Ferry sampling enables sufficient averaging to isolate the residual motion from stronger tidal currents, and captures its spatial structure. Mean along-estuary currents based on about 2 years of sampling reveal a vigorous estuarine exchange circulation (peak 25–30 cm s−1 at depth), with flow eastward out of the estuary in the upper water column of the southern half and inward westward movement strengthening with depth over the central and north section. Application of volume conservation implies there is a strong eastward current out of the estuary in the shallowest 7 m where no measurements were made, as expected for estuarine exchange flow. Water from the Connecticut River, entering LIS on the north shore nearby to the west, does not appear to exit the estuary directly eastward along the north shore unless this occurs wholly in the shallow layer not sampled. Transverse currents have complex structure with generally northward (southward) flow where shallow outward (deep inward) motion occurs. An idealized semi-analytic solution for transverse-vertical structure of along- and across-estuary flow has limited success accounting for observed currents, despite inclusion of bathymetric, frictional, and rotational influences; this suggests the importance in LIS of dynamics it omits, in particular stratification, or does not represent with sufficient realism, such as complex bathymetry. Estimated annual-mean exchange volume transport, based on the better-sampled deep inward component, is 22,700±5000 m3 s−1. This is comparable to previous estimates from some salt budget and hydrographic analyses, and implies advection contributes substantially to the total salt transport, contrary to results of a recent box-model analysis of hydrographic measurements. At seasonal timescales, changes to the transverse-vertical velocity structure are modest, but amplitude variations cause exchange volume transport increases (decreases) to 30,000 m3 s−1 (18,000 m3 s−1) in the summer (winter) months; a power-law dependence of exchange on river flow, as seen in other estuaries, is not supported. Strengthened summer transport is associated with enhanced stratification, suggesting that mixing effects modulate the exchange. To the extent that advection by residual flow contributes to total exchange between LIS and coastal waters, the flushing of materials from LIS should occur substantially faster in summer than in winter.  相似文献   

20.
This work intends to determine if low-cost surveying techniques based on recreational echosounders can be used to perform nearshore bathymetry for analysing evolution of coastal sectors. For that purpose, two hydrographic surveying techniques were compared, i.e. (1) a real-time kinematic differential global positioning system (RTK-DGPS) synchronised with a single beam echosounder with real-time tidal elevation correction and (2) a low-cost recreational echosounder-chartplotter system using Global Navigation Satellite Systems (GNSS) with real-time European Geostationary Navigation Overlay Service (EGNOS) augmentation services and depth values post-processed using measured sea level. Two bathymetric data sets were obtained, one by each method, for the same area and survey lines at an ebb tidal delta (Tavira Inlet, Ria Formosa Portugal). Vertical differences were determined assuming no morphological variations between surveys. Results showed that depth elevation differences between bathymetric surfaces were of 0.10?±?0.16 m, slightly higher but within the same order of the error attributable to the used interpolator (0.00?±?0.11 m, triangular surface fitting). The differences between surveys performed with two different equipment sets and using different methodologies for correcting water elevations are very small both quantitative and qualitatively. Those differences can be diminished by improving the tidal level correction and uncertainties associated to different tidal slopes throughout the survey area. Pitch/roll corrections performed with low-cost GPS receivers would be also a valuable addition to the accuracy and precision of the method. It is then concluded that navigation with EGNOS augmentation services and sounding devices ten times cheaper than combined RTK-DGPS with single beam echosounders allow to measure and monitor accurately the nearshore bathymetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号