首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
季子修  蒋目巽 《地理学报》1993,48(6):516-526
本区海岸现有30%的岸段为侵蚀海岸,海平面上升将使海岸侵蚀加剧。海平面上升因素在海岸侵蚀诸因素中的比重较国外同类研究结论偏小,这与本区海岸的特殊演变原因有关。海平面上升通过潮流、波浪和风暴潮作用增强,海岸潮滩和湿地损失,岸滩消浪和抗冲能力减小等途径引起海岸侵蚀加剧。其结果是,侵蚀岸段扩大,淤涨岸段减少甚至转为侵蚀,潮间带宽度变窄,坡度加大,从而使沿岸海堤等挡潮工程的标准要相应提高。  相似文献   

2.
雷州半岛海岸侵蚀及其原因研究   总被引:1,自引:0,他引:1  
通过对比不同时相的遥感影像,结合2008年的现场调查,介绍了雷州半岛海岸侵蚀现状并初步探讨了海岸侵蚀的原因.结果显示,雷州半岛南部和西部海岸除海湾之外都有不同程度的海岸侵蚀现象,共有10段岸段发生海岸侵蚀,总长度约281 km,占整个雷州半岛岸线的21.95%.除湛江湾、雷州湾、北莉河口以及安浦港等湾外,雷州半岛海岸侵...  相似文献   

3.
江苏海岸侵蚀过程及其趋势   总被引:51,自引:2,他引:51  
江苏省侵蚀海岸的总长度为 30 1 7km ,分为 4段 :废黄河三角洲海岸、港海岸、吕四海岸以及海州湾的沙质海岸。各段海岸侵蚀原因不同。废黄河三角洲海岸是因黄河改道失去泥沙来源 ;吕四与港海岸则因辐射沙洲调整过程中滨岸水道的向岸移动造成的 ;而北部沙岸则是因人类活动 (上游建设水库及开挖海滩沙 )的干扰。江苏海岸是一个沉积物准封闭系统 ,全球性海平面上升将加剧这一侵蚀过程 ,预计未来侵蚀海岸的长度将增加 ,辐射沙洲区的外围沙洲将因侵蚀而向中心区退缩。一些目前是隐型侵蚀的岸段将向显性侵蚀的阶段发展。由于连云港到长江口北支的岸段是软性海岸 ,缺乏硬质节点 ,在没有建造大型人工设施的前提下 ,估计江苏海岸动态及制定开发规划时必须考虑平直化的大趋势。  相似文献   

4.
内蒙古是我国土壤风力侵蚀较为严重的地区之一,同时也是我国土地利用方式剧烈变化的地区之一。依据两期土地利用数据以及相应年代的土壤风力侵蚀数据,研究了20世纪90年代末期内蒙古自治区土地利用和风力侵蚀的静、动态格局。根据土地利用和风力侵蚀的空间分布及动态变化特点,设计了内蒙古土地利用-风力侵蚀动态区划,基于该区划详细讨论了内蒙古不同地区占主导地位的土地利用动态与风力侵蚀动态,由此揭示了两者之间存在的驱动--被驱动关系。研究发现,在20世纪90年代末期,内蒙古土地利用和风力侵蚀的基本格局没有太大变化,但风力侵蚀强度在总体上增强了;土地利用的变化主要反映为草地的退化和耕地的扩张。土地利用动态与风力侵蚀动态有着良好的时空对应关系:草地的退化与耕地的扩张导致了显著的风力侵蚀增强,而草地的改善以及耕地的收缩对风力侵蚀的影响不如前者明显,这表明了土地利用动态对风力侵蚀动态正、反向驱动的不平衡性。  相似文献   

5.
风水复合侵蚀与生态恢复研究进展   总被引:4,自引:0,他引:4  
风水复合侵蚀是风力与水力共同或交替作用相互增强或者削弱的过程。从侵蚀区划分、驱动因素、侵蚀机理和生态恢复对策等方面论述了风水复合侵蚀的研究进展,简述了半干旱风水复合侵蚀区和海岸复合侵蚀区是两个影响最大的风水复合侵蚀区。晋陕蒙接壤区为半干旱风水复合侵蚀区的强烈侵蚀中心,在土地利用上属农牧交错区,生态环境极为脆弱。海岸复合侵蚀岸段分布广泛,侵蚀岸线在总岸线中所占比例较大。影响风水复合侵蚀的因素包括自然和人为因素,且地域差异显著。半干旱区风水复合侵蚀研究主要从侵蚀特点、土壤特性、侵蚀产沙、侵蚀能量研究等方面;海岸复合侵蚀区从侵蚀特征、风暴潮与海岸复合侵蚀关系等方面分析了取得的进展和存在的不足。总结了生物措施和工程措施对风水复合侵蚀区生态恢复的作用,展望了风水复合侵蚀与生态恢复的研究方向,并指出复合侵蚀机理与评估、生态恢复机理与评价研究是今后研究的趋势。  相似文献   

6.
西太湖沉积物污染的地球化学记录及对比研究   总被引:17,自引:4,他引:13  
刘恩峰  沈吉  朱育新 《地理科学》2005,25(1):102-107
通过对西太湖MS、DLS沉积短岩芯中金属元素、营养指标的对比分析,讨论了西太湖近80年来的元素地球化学演化特征。结果表明,20世纪40年代以前,西太湖沉积物中元素为自然来源;40~70年代末期,除北部Hg、TP受到人为污染之外,其余元素仍主要为自然来源;70年代末期以来,重金属元素人为污染逐渐加重,湖泊营养程度升高。西太湖北部沉积物中Pb、Zn、Mn、Ni、As污染开始于20世纪70年代末期,Hg污染开始于40年代初期;与北部相比,南部沉积物重金属污染历史较短,Pb、Zn污染开始于70年代末期,As、Mn、Ni、Hg污染开始于80年代中期~末期。西太湖北部、南部沉积物中TN、TOC含量70年代末期以来开始增加,C/N比值增大,有机质外源输入比例增加。西太湖北部沉积物中TP含量自40年代初期以来逐渐增加,受到人为污染;南部TP含量在40~70年代略高,但无明显的人为污染特征。  相似文献   

7.
砂质海岸侵蚀研究进展   总被引:4,自引:0,他引:4  
地形动力学方法已成为国外海岸地形动力过程研究的主要方法,国内仍多采用传统地理学的定性、半定量的研究方法,在海岸地形和水动力之间耦合机制方面所做的研究相对较少,这是国内砂质海岸侵蚀研究需加强之处.文中首先回顾了国内外砂质海岸侵蚀的研究历程,然后从海岸地形动力过程入手,从小、中、大3个尺度介绍了国、内外砂质海岸侵蚀的研究状况.  相似文献   

8.
江苏北部开敞淤泥质海岸的侵蚀过程及防护   总被引:9,自引:0,他引:9  
虞志英  张勇 《地理学报》1994,49(2):149-157
开敞淤泥质海岸是淤泥质海岸的主要类型,其自然演变过程,主要受沿海河流泥沙供应条件的制约,一旦泥沙供应消失,海岸往往进入不可逆转的侵蚀过程。江苏北部淤泥质海岸的侵蚀过程,起自1855年黄河入海口北归利津入海以后,主要是在近岸破波对岸滩物质的冲刷和潮流的输移扩散作用下进行的。通过对淤泥质海岸动力和沉积物性质的认识和概化,对海岸侵蚀过程作出定量模拟,并对该地区海岸防护工程作出评价和讨论。  相似文献   

9.
苏北废黄河三角洲海岸侵蚀脆弱性评估   总被引:3,自引:0,他引:3  
随着全球气候变化、海平面上升、人类活动加剧以及巨量泥沙来源断绝的影响,苏北废黄河三角洲海岸正面临前所未有的侵蚀灾害风险。本文基于研究区特点和脆弱性指数法(CVI),选取岸线变化速率、等深线变化速率、岸滩坡度、水下坡度、沉积动力环境、年平均含沙量、年平均高潮位、海岸利用类型、海岸开发适宜性等9个评估指标,采用层次分析法(AHP)确定各评估指标权重,结合遥感(RS)和地理信息系统(GIS)技术对废黄河三角洲海岸侵蚀脆弱性进行评估。结果表明废黄河三角洲整体表现为较高的侵蚀脆弱性,其中较高以上脆弱性超过50%,中度以上脆弱性超过75%。评估得出的海岸侵蚀脆弱性分布可为海岸带资源保护、防灾减灾、规划管理等提供重要的参考。  相似文献   

10.
自然地理上的“岬角”是指海岸地带突出在海中的陡峭、狭窄的夹角状的陆地。如非洲的好望角和南美洲的合恩角等。岬角的形成主要是海浪对海岸侵蚀所导致的。在松软岩石或泥质海岸的地区,海浪侵蚀作用非常明显,后退形成港湾;相反,由变质岩等硬度较大抗蚀能力较强岩石组成的海岸地段,被海浪侵蚀的速度较慢,向陆地后退的速度落后于海湾,遂成为分隔港湾的突出岬角。世界著名的四大岬角是:  相似文献   

11.
王晓利  侯西勇 《地理研究》2019,38(4):807-821
基于1982—2014年GIMMS NDVI3g数据集,分析中国沿海地区生长季归一化植被指数(NDVI)的时空变化特征,探讨NDVI对极端气温和极端降水年尺度和月尺度的响应特征。结果表明:中国沿海地区及其子区域NDVI均呈上升趋势,且该趋势具有一定持续性;江南及其以南各子区域的NDVI高于江南以北,但长江三角洲、珠江三角洲等地区NDVI下降较明显,而江南以北沿海地区NDVI多呈上升趋势。NDVI在东北沿海西部、华北和黄淮沿海各子区域与极端气温暖指数(暖昼日数和日最高气温的极高值)多呈负相关,在其他沿海地区多呈正相关。NDVI与极端气温冷指数(冷昼日数和日最低气温的极低值)在整个沿海地区基本呈负相关,且对冷指数的响应具有一定滞后性;江淮(含)以南各子区域的NDVI与气温日较差多呈正相关,以北基本呈负相关。NDVI在黄淮以北与极端降水之间一般呈正相关,在黄淮(含)以南和东北沿海中东部地区多呈负相关,黄淮(含)以北各子区域的NDVI对极端降水的滞后效应较明显。  相似文献   

12.
Based on measured data of coastline and bathometry, processed by softwares of Surfer and Mapinfo, and combined with sediment loads in different phases at Lijin gauging station, temporal and spatial evolution of coastline and subaqueous geomorphology in muddy coast of the Yellow River Delta is analyzed. The results show that ~68% of sediments were delivered by the Yellow River deposited around the river mouth and in the littoral area from 1953 to 2000. Coastline in different coasts had distinctive changes in response to shifts of river course. Coastline was stable in the west of the Diaokou river mouth. Coastline from the east of the Diaokou river mouth to the north of the Gudong oilfield had experienced siltation, then serious erosion, and finally kept stable with sea walls conservation. Generally, coastline of the survived river mouth of the Qingshuigou river course stretched seaward, whereas the south side of sand spit at the Qingshuigou old river mouth was eroded after the Yellow River inpouring near the position at the Qing 8. The subaqueous geomorphology off the survived river mouth exhibited siltation from 1976 to 1996, with flat topset beds and steeper foreset beds. From 1996 to 2005, the subaqueous geomorphology off the Qingshuigou old river mouth was eroded in the topset and foreset beds, but silted in the bottomset beds. The subaqueous geomorphology off the new river mouth sequentially performed siltation with small degree compared to that of 1976–1996.  相似文献   

13.
黄河三角洲岸线及现行河口区水下地形演变   总被引:2,自引:0,他引:2  
根据实测的岸线和水深数据,利用Surfer 和Mapinfo 等软件进行数据处理,结合不同阶段利津站输沙量,分析了黄河三角洲岸线及现行河口区水下地形演变。结果表明:1953-2000年,68%左右的入海泥沙淤积在口门和滨海区。由于入海流路变迁,不同岸段的岸线变化具有各自的特征。刁口河流路以西岸线基本稳定;刁口河流路以东—孤东油田以北岸线经历先淤后冲,属于强侵蚀岸段,但在防潮大堤的保护下得到人为控制下的稳定;清水沟流路形成的岸线整体向海淤进,但清8 出汊后,清水沟老河口沙嘴南侧出现侵蚀。1976-1996 年,现行河口(清水沟流路) 水下地形总体上表现为淤积,顶坡段变缓,前坡段变陡。1996-2005 年,清水沟老河口水下地形顶坡段和前坡段发生侵蚀,底坡段呈现淤积;出汊新河口水下地形继续淤积,但程度和范围都比1976-1996 年的小。孤东油田近岸侵蚀加剧。  相似文献   

14.
40年来长江九江河段河道演变及其趋势预测   总被引:8,自引:4,他引:4  
利用地理信息系统(GIS)与数字高程模型(DEM)技术定量模拟40年来九江河段冲淤演变过程,结果表明: 1963~1972年总体表现为淤积,淤积量为6.505 hm3,平均淤积速率为0.65 hm3/a。1972~2002年总体表现为冲刷,冲刷量为20.720 hm3,平均年冲刷率为1.036 hm3/a。1963~2002年九江河床总体表现为冲刷,冲刷量为14.977 hm3。2003年与1963年比较,河床淤积区域主要分布在九江河道上段近南岸区域,中下段河道的中间区域;冲刷区域主要分布在九江河道上段的中间及近北岸区域,中下段河道两岸的近岸区域。中下段南岸的不断刷深和南偏对九江的防洪带来更大的压力。  相似文献   

15.
Over the past decades, > 50,000 dams and reforestation on the Yangtze River (Changjiang) have had little impact on water discharge but have drastically altered annual and particularly seasonal sediment discharge. Before impoundment of the Three Gorges Dam (TGD) in June 2003, annual sediment discharge had decreased by 60%, and the hysteresis of seasonal rating curves in the upper reaches at Yichang station had shifted from clockwise to counterclockwise. In addition, the river channel in middle-lower reaches had changed from depositional to erosional in 2002.During the four years (2003–2006) after TGD impoundment, ~ 60% of sediment entering the Three Gorges Reservoir was trapped, primarily during the high-discharge months (June–September). Although periodic sediment deposition continues downstream of the TGD, during most months substantial erosion has occurred, supplying ~ 70 million tons per year (Mt/y) of channel-derived sediment to the lower reaches of the river. If sand extraction (~ 40 Mt/y) is taken into consideration, the river channel loses a total of 110 Mt/y. During the extreme drought year 2006, sediment discharge in the upper reaches drastically decreased to 9 Mt (only 2% of its 1950–1960s level) because of decreased water discharge and TGD trapping. In addition, Dongting Lake in the middle reaches, for the first time, changed from trapping net sediment from the mainstem to supplying 14 Mt net sediment to the mainstem. Severe channel erosion and drastic sediment decline have put considerable pressure on the Yangtze coastal areas and East China Sea.  相似文献   

16.
The Dongting Lake is located in the south beach of the middle reaches of the Yangtze River. Its catchment, with an area of 262,823 km2 or about 12% of the total Yangtze River catchment, is situated between 28o43?29o32扤 and 112o54?113o8扙, and crosses Hubei and Hunan provinces in administrative division. The main tributaries include Xiangjiang, Zishui, Yuanjiang, Lishui rivers (4 Tributaries) and some local rivers, such as Miluo River, Xinqiang River and other little streams. In the nor…  相似文献   

17.
The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir, there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels.  相似文献   

18.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号