首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
2021年2月13日,日本本州东岸近海发生7.3级地震,没有造成人员死亡,仅150余人受伤,导致建筑物和基础设施发生不同程度的破坏和功能中断。此次强震并未造成大量的人员伤亡和工程结构本体破坏,但出现非结构构件破坏较为普遍以及基础设施功能中断的情况。介绍了各机构的震后灾害损失快速评估工作,总结了工程结构破坏和功能影响、人员伤亡和经济损失情况。对此次地震的灾害特征进行了总结和思考,认为随着各地区抗震能力的提高,非结构构件破坏、地震灾害链、基础设施功能中断与恢复、抗震韧性将成为今后研究的重点。  相似文献   

2.
2008年5月12日,四川省汶川县发生了里氏8.0级地震,造成了巨大的人员伤亡以及工程结构震害。位于震中映秀镇的漩口中学教学综合楼是按照《建筑抗震设计规范(GB50011-2001)》进行设计的,按7度进行抗震设防。在此次地震中,该建筑破坏严重,工程震害典型。为此,本文考虑了钢筋混凝土与砌体的材料非线性性质,建立了框架填充墙结构的非线性分析模型,进行了非线性有限元时程分析,分析了结构破坏的原因,讨论了填充墙体对结构抗震性能的影响,为该类结构的抗震设计提供了一定的依据。  相似文献   

3.
2008年5月12日,中国四川省汶川县发生里氏8.0级地震。汶川地震是中国建国以来最为严重的地震,造成了巨大的人员伤亡以及工程结构震害。震中位于映秀镇(北纬31.015°,东经103.365°)。映秀镇的建筑结构形式多样,其中有钢筋混凝土框架结构、砖混结构、底框架结构和工业厂房。该镇的建筑多数是按照不同时期的《建筑抗震设计规范》进行设计。一部分抗震设防烈度为7度,少数抗震设防烈度为8度。由于映秀镇地震动强度大,建筑物的破坏十分严重,震害非常典型,为地震工程学提供了极具价值的材料,对工程震害的研究在理论与工程实践都具有十分重要的意义。本文对在映秀镇收集到的工程震害进行概述,讨论不同结构形式的破坏现象和特点,并给出简要的分析。  相似文献   

4.
2013年3月11日新疆阿图什发生慨5.2地震,震中烈度Ⅵ度,地震没有造成人员伤亡,个别民宅倒塌,造成直接经济损失2397万元。结合此次地震考察评估工作,分析此次地震造成经济损失的震害原因。从房屋破坏、房屋建筑场地条件和抗震安居工程三点,描述了此次地震的震害特征,与新疆伽师、莎车等具有相同地质条件的地区进行震后对比,并结合2009年4月22日发生的新疆阿图什Ms5.0地震,提出了对此次地震的认识与建议。  相似文献   

5.
2021年2月13日日本福岛县发生了M7.3级地震,造成了大量铁路基础设施破坏。介绍了铁路系统在此次地震中的震害和应急修复情况,总结了震害的典型特征及启示。通过与2011年东日本大地震进行比较,从土木结构和电气设施两方面对铁路系统震害特点进行了分析,从抗震韧性角度讨论了此次地震应急修复方法与策略,总结了日本铁路设施抗震的经验和对我国铁路设施抗震的启示。分析表明:支柱折断、支柱开裂倾斜、架空电线拉断和定位设施损坏为铁路电气设施常见震害;土木结构方面,随着地震强度的增大,可能伴有轨道变形、挡块开裂、梁端破坏、横系梁开裂甚至墩柱损伤的发生。从震害现象的比较中,可以看出东日本大地震以来的维修加固措施是有成效的。  相似文献   

6.
抗震建筑的结构整体性分析和构造措施   总被引:1,自引:1,他引:0  
汶川大地震发生后,大量房屋建筑整体性倒塌,造成了严重的人员伤亡和经济损失.根据现场实际震害调查,总结和反思了若干经验教训,其中对建筑结构的整体性抗震和构造进行了分析,包括设防水准、概念设计、选型布局、结构整体性、结构刚度、强柱弱梁、构造措施、非结构部件、抗震缺陷、病态抗震结构等等.汶川地震震害也证明了建筑结构整体性抗震和构造的重要性.  相似文献   

7.
2019年6月17日宜宾双河发生M6.0级地震,造成了距离震中仅5km的双河文庙建筑东北侧上檐翼角损坏和西侧局部斜撑脱落等局部损坏。双河文庙是典型的木结构文保历史建筑,开展相关震害和抗震分析具有重要意义。以近期在周边建立的场地-建筑强震反应融合监测台站获取的强震记录作为类比输入,进行结构地震反应仿真分析,结果表明:该木结构的整体刚度偏小,易发生扭转破坏,在7度中震和大震作用时,结构扭转效效极易引发挑檐处榫卯节点破坏,与实际震害情况吻合,该类结构宜适度补强纵向抗侧刚度,增强整体抗扭能力。  相似文献   

8.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

9.
<正>2015年4月15日15时39分,内蒙古自治区阿拉善盟阿拉善左旗(39.8°N,106.3°E)发生5.8级地震。地震未造成人员伤亡,震中附近少部分老旧房屋出现裂缝和局部破坏。但是部分结构震前存在裂缝和局部倒塌现象,民居抗震能力普遍较差。如发生较大破坏地震,震害会大大加重,也会造成较大的人员和财产损失,所以非常有必要在这次震害的基础上,分析内蒙古本地民居的抗震能力,研究民居结构的抗震  相似文献   

10.
九寨沟7.0地震给九寨沟地区建筑结构及非结构构件造成了严重破坏。本文主要涉及调查区域包括漳扎镇、甲藩古城、若尔盖县阿西茸乡、求吉乡及包座乡等。主要调查框架结构、砖混结构、大跨空间结构以及木结构的非结构构件震害。此次调查的结构多数是2000年以后建造,8度设防,在2008年汶川地震中主体结构和非结构构件均未受到影响。在此次地震中,非结构构件大量损坏,破坏主要以框架、砌体填充墙开裂或变形或局部倒塌、吊顶脱落、地板隆起、吊顶设备掉落、玻璃震碎等震害为主。调查结果表明,与以往地震不同,Ⅷ度区内仅有的三个大跨度结构均发生不同程度的破坏,其中一个结构出现节点破坏,此次地震中大跨空间结构非结构构件震损尤为明显,非结构构件设备损失最为严重。另一个不同于以往地震震害的是位于Ⅵ度区山坡上的木结构非结构震害明显比坡下要严重一些。  相似文献   

11.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

12.
2021年5月21日云南漾濞发生6.4级地震,成为继2014年6.5级鲁甸地震和6.6级景谷地震之后云南省内时隔7年的又一次震级大于6级的破坏性地震。漾濞地震虽然与鲁甸地震在震级、震源深度和震源机制等方面均较相似,但漾濞地震震中附近的地面运动强度远不及鲁甸地震,且漾濞县的抗震设防烈度远高于鲁甸;相应地,漾濞地震对抗震设防建筑造成的破坏也远轻于后者。本文首先通过比较这三次地震震中附近的强震记录的反应谱,并结合公共建筑的震后应急评估结果,说明漾濞地震和鲁甸地震中公共建筑破坏程度的显著差异。进而以位于漾濞县城的两栋钢筋混凝土公共建筑为例,介绍此次地震中砌体填充墙和吊顶等典型非结构构件的震害。  相似文献   

13.
2021年2月13日,日本福岛县近海发生M7.3级强地震及多次余震。根据台站地震动数据,从地震地面运动特征,框架结构震害特征以及有无速度脉冲地震动下框架结构的动力响应等方面对此次地震震害进行了初步探究。结果表明:此次福岛近海地震有比较明显的速度脉冲特征,地震动的加速度反应谱卓越周期较低,速度频谱却以低频成分为主。在速度脉冲型地震作用下,结构层间位移角和楼层剪力远大于非速度脉冲地震动,是此次地震中非结构构件发生破坏的主要原因。  相似文献   

14.
现代公共建筑非结构构件的投资比远远大于结构构件的建造成本比例,非结构构件在地震中的破坏会造成巨大经济损失。作为一种典型的非结构构件,管线系统的破坏往往导致建筑丧失给水、排水以及消防等多重使用功能。从拟静力试验、动力试验、振动台试验、数值模拟及易损性分析等角度对管线系统抗震性能研究方法进行了系统总结,介绍各类研究方法的应用实例及其利弊,并对管线系统抗震性能研究方法的发展方向进行了展望。  相似文献   

15.
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

16.
A catastrophic M w9.0 earthquake and subsequent giant tsunami struck the Tōhoku and Kanto regions of Japan on 11th March 2011, causing tremendous casualties, massive damage to structures and infrastructure, and huge economic loss. This event has revealed weakness and vulnerability of urban cities and modern society in Japan, which were thought to be one of the most earthquake-prepared nations in the world. Nevertheless, recorded ground motion data from this event offer invaluable information and opportunity; their unique features include very strong short-period spectral content, long duration, and effects due to local asperities as well as direction of rupture/wave propagation. Aiming at gaining useful experience from this tragic event, Earthquake Engineering Field Investigation Team (EEFIT) organised and dispatched a team to the Tōhoku region of Japan. During the EEFIT mission, ground shaking damage surveys were conducted in Sendai, Shirakawa, and Sukagawa, where the Japan Meteorological Agency intensity of 6+ was observed and instrumentally recorded ground motion data were available. The damage survey results identify the key factors for severe shaking damage, such as insufficient lateral reinforcement and detailing in structural columns from structural capacity viewpoint and rich spectral content of ground shaking in the intermediate vibration period range from seismic demand viewpoint. Importantly, inclusion of several ground motion parameters, such as nonlinear structural response, in shaking damage surveys, can improve the correlation of observed ground motion with shaking damage and therefore enhance existing indicators of potential damage.  相似文献   

17.
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

18.
On March 11th 2011 a M w 9.0 mega-thrust interface subduction earthquake, the Great East Japan Earthquake, occurred 130 km off the northeast coast of Japan in the Pacific Ocean at the Japan Trench, triggering tsunami which caused damage along 600 km of coastline. Observations of damage to buildings (including vertical evacuation facilities) and coastal defences in Tōhoku are presented following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures. Observations are presented in the context of the coastal setting and tsunami characteristics experienced at each location. Damage surveys were carried out in Kamaishi City and Kesennuma City using a damage scale for reinforced concrete (RC), timber and steel frame buildings adapted from an earlier EEFIT tsunami damage scale. Observations show that many sea walls and breakwaters were overtopped, overturned, or broken up, but provided some degree of protection. We show the extreme variability of damage in a local area due to inundation depth, flow direction, velocity variations and sheltering. Survival of many RC shear wall structures shows their high potential to withstand local earthquake and significant tsunami inundation but further research is required into mitigation of scour, liquefaction, debris impact, and the prevention of overturning failure. Damage to steel and timber buildings are also discussed. These observations are intended to contribute to mitigation of future earthquake and tsunami damage by highlighting the key features which influence damage level and local variability of damage sustained by urban coastal infrastructure when subjected to extreme tsunami inundation depths.  相似文献   

19.
我国在非结构构件抗震性能方面的实验研究尚处于起步阶段。首先介绍了美国纽约州立大学布法罗分校非结构构件模拟器的加载制度(UB-NCS加载制度)。在此基础上,为了考虑结构特性对非结构构件地震反应特性的影响,建议以结构在大量地震动作用下的非线性时程反应为依据,确定楼面峰值加速度和最大层间位移沿结构高度方向的分布函数。将其用于UB-NCS加载制度,可得到针对某一具体结构中位于某一楼层的非结构构件的位移时程加载曲线。该方法在对非结构构件进行检测加载时,能够考虑其所在结构的非线性地震反应特性,可用于研究不同的结构体系或地震损伤控制技术在减轻非结构震害方面的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号