首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of the thermocline equations in the thermocline areas and the boundary layer and the asymptotic matching techniques in each boundary in order to satisfy the surface and bottom conditions yielded a theoretical 2- D solution of the vertical thermohaline circulation of the Southern Yellow Sea in summer when the quasi-statically varying seasonal thermocline (density layer) is the background density structure , the deviations from which cause the secondary vertical circulation . The results show that the thermocline can be considered as an internal boundary or a barrier to the vertical heat advection so that in the central areas of the Southern Yellow Sea or the center of the Yellow Sea Cold Water Mass(YCWM)> the downwelling in the upper layer and upwelling in the lower or bottom layer form a double cell vertical circulation . The solution is similar to Hu's conceptual model ( 1986) in the central areas of the YCWM and is consistent with observed temperature . salinity and dissolved oxygen distri  相似文献   

2.
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.  相似文献   

3.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

4.
Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models. The turbulence associated with non-breaking waves is widely believed to effectively solve this problem. In many studies, non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs). In the present work, the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation, as well as climate, models. The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean. The models evaluated, including those considering LC effects alone and the combined effects of LCs and wave breaking, failed to produce a reasonable summertime thermocline, resulting in a large cold bias in the subsurface layer. Therefore, while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models, LCs are insufficient to solve the problem of insufficient vertical mixing. Moreover, restriction of non-breaking surface wave-induced processes in LCs may be questionable.  相似文献   

5.
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that t  相似文献   

6.
Based on observed temperature data since the 1950s, long-term variability of the summer sharp thermocline in the Yellow Sea Cold Water Mass (YSCWM) and East China Sea Cold Eddy (ECSCE) areas is examined. Relationships between the thermocline and atmospheric and oceanic forcing were investigated using multiyear wind, Kuroshio discharge and air temperature data. Results show that: 1) In the YSCWM area, thermocline strength shows about 4-year and 16-year period oscillations. There is high correlation between summer thermocline strength and local atmospheric temperature in summer and the previous winter; 2) In the ECSCE area, interannual oscillation of thermocline strength with about a 4-year period (stronger in El Ni o years) is strongly correlated with that of local wind stress. A transition from weak to strong thermocline during the mid 1970s is consistent with a 1976/1977 climate shift and Kuroshio volume transport; 3) Long-term changes of the thermocline in both regions are mainly determined by deep layer water, especially on the decadal timescale. However, surface water can modify the thermocline on an interannual timescale in the YSCWM area.  相似文献   

7.
The Yellow Sea Cold Water Mass(YSCWM),one of the most vital hydrological features of the Yellow Sea,causes a seasonal thermocline from spring to autumn.The diel vertical migration(DVM) of zooplankton is crucial to structural pelagic communities and food webs,and its patterns can be affected by thermocline depth and strength.Hence,we investigated zooplankton community succession and seasonal changes in zooplankton DVM at a fixed station in the YSCWM.Annual zooplankton community succession was affected by the forming and fading of the YSCWM.A total of 37 mesozooplankton taxa were recorded.The highest and lowest species numbers in autumn and spring were detected.The highest and lowest total densities were observed in autumn(14 464.1 inds./m3) and winter(3 115.4 inds./m3),respectively.The DVM of the dominant species showed obvious seasonal variations.When the YSCWM was weak in spring and autumn,most species(e.g.Paracalanus parvus,Oithona similis,and Acartia bifilosa) stayed above the thermocline and vertically migrated into the upper layer.Calanus sinicus and Aidanosagitta crassa crossed the thermocline and vertically migrated.No species migrated through the stratification in summer,and all of the species were limited above(P.parvus and A.crassa) or below(C.sinicus and Centropages abdominalis)the thermocline.The YSCWM disappeared in winter,and zooplankton species were found throughout the water column.Thus,the existence of thermocline influenced the migration patterns of zooplankton.Cluster analyses showed that the existence of YSCWM resulted in significant differences between zooplankton communities above and below the thermocline.  相似文献   

8.
Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level >95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69°C, 0.52°C and 1.18°C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17°C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007°C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all <20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX-3W-222; KZCX2-YW-Q11-02) and National Basic Research Program of China (No.2007CB411802; 2006CB403601)  相似文献   

9.
A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. It simulates well the oligotrophic shelf ecosystem of the YSCWM considering effects of nutrients deposition and microbial loop. Main features of vertical structure of various variables in ecosystem of the YSCWM were captured and seasonal variability of the ecosystem was well reconstructed. Calculation shows that the contribution of microbial loop to the zooplankton can reach up to 60%. Besides, input of inorganic nutrients from atmospheric deposition is an important mechanism of production in upper layer of the YSCWM when stratified.  相似文献   

10.
Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003, the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35°N and 36°N sections. Also, double warm cores exist above the main thermocline along the 36°N section. (2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. Additionally, the circulation structure caused by upwelling along the cold front and northeastward current along the coast in summer is the main reasons of double warm cores along the 36°N section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually, which is related to El Nino events. However, the  相似文献   

11.
Interannual variability of the southern Yellow Sea Cold Water Mass   总被引:2,自引:0,他引:2  
Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through 2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the southern Yellow Sea Cold Water Mass (YSCWM). The first mode (EOF1) reveals variations of basin-wide thermocline depth, which is mainly caused by surface heating. The second mode (EOF2) presents fluctuations of vertical circulation, resulting mainly from interannual variability of cold front intensity. In addition, it is found that the upward extent of upwelling in the cold front is basically determined by wind stress curl and the zonal position of the warm water center in the southern Yellow Sea is correlated with spatial difference of net heat flux.  相似文献   

12.
CTD data on standard levels coolected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity.The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS),and especially in the region of the north shelf where the thermocline disappears in december.The thermocline is stronger and thicker in July than in December,There is no obvious seasonal variation in the halocline.Due to the upper Ekman transport caused by monsoon over the SCS,the thermocline slopes upward in July and downward in december from east to west in the northern SCS.The characteristics of the thermocline and halocline are influenced by local eddies in the SCS.The Zhujiang diluted flow influences significantly the SCS shelf‘s halocline.  相似文献   

13.
MODUrnONTheS0uthChinaSea(SCS)isabophalrnarginalbasinwhereEastAsiamonsoonsprevail.0bviousadjustInentSoftheupperocanoccurduetOthealtematingsurnxneandwintermonsoons.ThemostboohantaspchoflargeanlecurmtSintheSesaretheupperoonnicresponsetothemonsoons(Dale,l956).MostpreviousmrehesfocusedondiagnostiesandmodelingofsuffocecurmtS.Wwti(l96l)plotalsurfacentsbasedonshipdriflsintheNAGAReportNo.2anddescritaltheperiodicallysdri-annualreversingofwindsandrtinthisarea.Xuetal.(l982)calculatalthedy-naAn…  相似文献   

14.
Study of horizontal and vertical distributions of the N/P(nitrogen versus phosphate)atom ratio in the northem South Yellow Sea showed that the ratio varied greatly in upper waters of the in-vestigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone.It was in general higher near the coast and lower in the central part.With increasing depth,the ratio became smaller and smaller.This distribution pattem is attributed to :1)the anthropo-genic influence of the surface N and P which makes the N/P ratio differ from the normal value;2)the easy adsorption of P on particles hinders P trasport to the central part;3)below the thermocline zone,the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and;4)the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.  相似文献   

15.
From the synopical CTD sections in the WOCE PR11 repeated cruises, the South Pacific Subtropical Mode Water (SPSTMW) has been identified in the region of the Tasman Front Extension (TFE) around 29?S to the east of Australia. In the depth range of 150-250 m, the SPSTMW appears as a thermostad with vertical temperature gradient lower than 1.6℃(100 m)-1 and a tem- perature range of 16.5-19.5℃ and as a pycnostad with PV lower than 2×10-10 m-1 s-1 and a potential density range of 25.4-26.0 kg m-3. Like the subtropical mode waters in the North Atlantic and North Pacific, the formation of the SPSTMW is associated with the convective mixing during the austral wintertime as manifested from the time series of the Argo floats. And cold water entrains into the mixed layer with the deepening mixed layer from September to the middle of October. During the wintertime formation process, mesoscale eddies prevailing in the TFE region play an important role in the SPSTMW formation, and have a great effect on the SPSTMW distribution in the next year. The deeper (shallower) mixed layer in wintertime, consistent with the depressed (uplifted) permanent thermocline, is formed by the anticyclonic (cyclonic) eddies, and the substantial mode water thicker than 50 m is mainly found in the region of the anticyclonic eddies where the permanent thermocline is deeper than 450 m.  相似文献   

16.
Wei  Xiaowei  Zhang  Yiming  Dong  Changming  Jin  Meibing  Xia  Changshui 《中国海洋湖沼学报》2021,39(6):2144-2152
Journal of Oceanology and Limnology - Velocity vertical profiles in the bottom boundary layer are important to understand the oceanic circulation. The logarithmic vertical profile, u=Alnz+B, is the...  相似文献   

17.
INTRODUCTIONEquatorialKelvinwavesareofspecialsignificanceinthedynamicsoftheequatorialocean ,duetotheirhighpropagationspeedandequatoriallytrappednature.NumericalandobservationalstudiesstronglysuggestedthatKelvinwavesplayamajorroleinElNi no SouthernOscillationandotheroceanphenomena.Themainthermoclinevariabilityinthetropicaloceanswasstudiedextensivelybyvariousre searchers (LongandChang ,1 990 ;YangandYu ,1 992 ) .Animportantfeatureoftheequatorialoceanthermalstructureistheeastwardshoaling…  相似文献   

18.
Surveys since 1959 showed that the dynamic basis of the East China Sea sectional circulation is the nearshore seawater horizontal divergence caused by wind on the surface compensated by Kuroshio subsurface water convergence caused by meridional current in the lower layer. Fish always tend to migrate along certain routes or stay in certain areas favorable for development of eggs, survival of larvae and living of adults. The movement of water masses supplies a very important driving force for marine animals migrating long distance. The lower part of the sectional circulation formed by the subsurface water of Kuroshio is not suitable for the aggregation of fish because of its lack of oxygen, and has therefore a driving influence on demersal fishes. This study of the sectional circulation influence on the distributions of some commercially important species in the East China Sea reveals a close relationship between the circulation and the movement of fish schools. The principal factors influencing zonal vertical circulation are the meridional vector of the Kuroshio lower layer and atmospheric circulation, referning here mainly to the subtropical high pressure in the Asia-Pacific area that causes surface divergence and lifts subsurface water from the bottom to the surface at the nearshore area. Some simple methods for estimating the intensity of the sectional circulation are, introduced for fishery forecasts and operations.  相似文献   

19.
Using hydrographic data sampled during four successive late summer-early autumn cruises in 2004-2007, vertical stratification along transects in the lee of Taiwan Island was analyzed to investigate upper ocean responses to orographically induced dipole wind stress curl (WSC). Results indicate that mixed-layer depth (MLD) and its relationship with thermocline depth varied under different local wind forcings. Average MLD along the transects from the 2004 to 2007 cruises were 18.5,30.7,39.2 and 24.5m, respectively. The MLD along the transects deepened remarkably and resulted in thermocline ventilation in 2005 and 2006, whereas ventilation did not occur in 2004 and 2007. Estimates indicate that frictional wind speed was the major factor in MLD variations. To a large degree, the combined effects of frictional wind speed and Ekman pumping are responsible for the spatial pattern of MLD during the cruises.  相似文献   

20.
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号