首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heavy rainfall event during the period from 30th of March to 2nd of April 2009 has been studied using upper air and surface data as well as NOAA HYSPLIT model. This observational study attempts to determine factors responsible for the occurrence of heavy rainfall over Iran induced by Mediterranean cyclone, a western severe sub-tropical storm that made rainfall on most regions of the country. On the surface chart, cyclones, anticyclones and weather fronts were identified. The positions of the cold and warm fronts, which extended from a two-core low pressure center, were quite in good agreements with directions of winds i.e., westerly, southerly and easterly flows as well as the regions of precipitation. The heavy rain event occurred due to a Mediterranean cyclone’s activity over the study area, while other conditions were also responsible for this event such as an unstable atmosphere condition with abundant low-level moisture, which the warm and moist air parcels were brought by the southwesterly low-level jet into the country from Persian Gulf, Oman Sea, Indian Ocean and Caspian Sea at lower levels as well as Mediterranean Sea, Red Sea and Persian Gulf at upper levels over the examined period. A strong low-level convergence zone was observed along the wind-shift line between the southwesterly flow because of the low-level jet and the northeasterly flow due to the Russian high pressure. The amount of precipitable water varied between 20 and 24 kg m?2, surface moisture convergence exceeded 2.5 g kg?1 s?1 and the highest CAPE value in the sounding profiles was observed in Birjand site with 921 J kg?1 during the study period. The HYSPLIT model outputs confirmed the observed synoptic features for the examined system over the country.  相似文献   

2.
Indian monsoon is the most prominent of the world’s monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran’s synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960–2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon’s withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall’s precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran’s plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian coastal provinces, which has a different behavior from the overall response of Iran’s climate to the late withdrawal of monsoon. In the phase of early monsoon withdrawal, the subtropical jet is located at the 200 hPa level in 32.5° north latitude; compared with the late withdrawal date, it shows a 2° southward movement. Additionally, the 500 hPa trough is also located in the Eastern Mediterranean, and the MSL pressure anomaly is between ? 4 to ? 7 hPa. The Mediterranean trough in the late withdrawal phase is located in its central zones. It seems that the lack of significant correlation between late withdrawal date of Indian monsoon and late fall’s precipitation onset in the central region of Iran depends on three reasons:1. Lack of adequate weather stations in central region of Iran.2. Precipitation standard deviations over arid and warm regions are high.3. Central flat region of Iran without any source of humidity is located to the lee side of Zagros mountain range. So intensification or development of frontal systems is almost prohibited over there.  相似文献   

3.
The interannual variability in the formation of mini warm pool (MWP, SST ≥ 30.5°C) and its impact on the formation of onset vortex (OV) over the east-central Arabian Sea (ECAS) are addressed by analyzing the NCEP OIV 2-weekly SST data and NCEP–NCAR reanalysis 850 hPa wind fields from May to June (prior to the onset of monsoon) over the north Indian Ocean for a period of 12 years from 1992 to 2003. Strong interannual variability in the formation and intensification of MWP was observed. Further, the 850 hPa wind fields showed that OV developed into an intense system only during 1994, 1998 and 2001. It formed in the region north of the MWP and on the northern flank of the low-level jet axis, which approached the southern tip of India just prior to the onset of monsoon, similar to the vortex of MONEX-79. The area-averaged zonal kinetic energy (ZKE) over the ECAS (8–15°N, 65–75°E) as well as over the western Arabian Sea (WAS, 5°S–20°N, 50–70°E) showed a minimum value of 5–15 m2 s?2 prior to monsoon onset over Kerala (MOK), whereas a maximum value of 280 m2 s?2 (40–70 m2 s?2) was observed over the ECAS (WAS) during and after MOK. The study further examined the plausible reasons for the occurrence of MWP and OV.  相似文献   

4.
广西区是我国南方电网西电东送输电的重要通道, 2015年1月26日—2月8日期间广西区北部桂林地区发生了一次大范围超高压输电线路的连续覆冰事件, 其最大覆冰厚度可达24.83 mm。利用ERA5再分析资料和气象观测资料结合南方电网超高压输电线路覆冰观测资料, 从天气形势、温湿垂直层结、局地气象要素以及大气环流指数等方面综合分析了此次电线覆冰的天气学成因。结果表明, 东亚大槽偏强, 阻塞高压引导脊前偏北气流南下, 冷空气入境与西太平洋副热带高压带来的暖湿气流汇合, 在北方寒潮与南方水汽的共同作用下, 地处高海拔的输电线塔杆易出现覆冰。冷暖气团在桂林北部山区上空相互对峙形成准静止锋时出现两种覆冰变化特征: 当冷空气强盛且水汽充沛时, 过冷却雨滴冻结或者雾滴凝华形成电线积冰; 而在暖气团主导下电线覆冰则自然融化。准静止锋的锋区移动在很大程度上影响着电线的覆冰增长过程, 特别地, 冷暖空气的交替主导是电线反复积冰的主要原因。   相似文献   

5.
The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081–2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m?2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s?1.  相似文献   

6.
The characteristics of flood-producing cloud bands over the Kalahari Desert (15-30°S, 15-22°E) are described using daily time-scale observations, reanalysis and satellite data. The cloud band extends southward from Angola, producing short periods of intense rainfall over Namibia. Their frequency of occurrence is ~8% according to singular value decomposition of gridded 1° daily GPCP rainfall 1996-2008. The environmental features evident from case study and composite analysis include: (1) cut-off low over the Namibian coast and deep anticyclonic ridge south of Africa, (2) inflow of air from vegetated surfaces to the northeast (Q?>?300 W m?2) into a 300 km wide meridional axis, (3) a large-scale sea breeze that enhances afternoon convection, and in the background, (4) warming of the southeast Atlantic Ocean off Angola. Short-range GFS forecasts appear accurate for the devastating 5 February 2009 event 5 days in advance.  相似文献   

7.
A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s?1 < U 10 < 7 m s?1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s?1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s?1 < U 10 < 7 m s?1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s?1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.  相似文献   

8.
The thermohaline structure of waters in the East Siberian Sea coastal zone in September 2000, 2003, and 2004 is investigated. It is found that the spatial variability of thermohaline characteristics was determined by various synoptic conditions observed over the East Siberian Sea during the summer-autumn season and by fluctuations in the river discharge. In surface layers, plume fronts are identified. Under conditions of cyclonic atmospheric circulation of 2003, fresh waters spread as a narrow jet along the coast. During anticyclonic circulation of 2004, some meridional fronts existed. Horizontal gradients of thermohaline characteristics were 0.01–0.02°C/km and 0.03–0.07 psu/km off the Indigirka River and 0.02–0.03°C/km and 0.06–0.09 psu/km near the Kolyma River mouth being an order of magnitude less than the vertical ones. The stratification of coastal waters was amplified as the river and ice-melted runoff increased. In the thermohalocline, the average Brunt-Väisälä frequency was 0.042 s?1 (in 2000), 0.068 s?1 (in 2003), and 0.074 s?1 (in 2004).  相似文献   

9.
We analyzed wind profiler data collected over Ulsan airport during the period from 2008 to 2009 to examine the characteristics of low level jets (LLJs). The Ulsan airport is located within the narrow valley with north-south axis. The frequency analysis results indicates that the nearly 19% of the total nocturnal periods have the presence of jets and LLJ occurrence rate is high in winter (32%) and low in summer (10%). The mode in the wind speed histogram is 4?C6 m s?1. A majority of jet occurs below 100 m (about 77.8 m) above ground. The predominant wind direction of jet is northerly. In order to examine the favorable conditions for LLJ formation of Ulsan airport, we investigated temperature difference between valley and plain at the surface and synoptic wind direction and speed at 850 hPa. Our results show that air temperature in the valley is lower than over the plain during the nighttime, indicating the existence of thermal forcing for along-valley wind. Under a significant temperature difference along the valley, westerly wind speed at 850 hPa is slightly weaker on LLJs event night than no event night, indicating weaker north-south large-scale pressure gradient on LLJ event night. The magnitude of northerly wind at 850 hPa is much stronger on event night than no event night, implying higher downward transfer of northerly wind on event night. Our findings suggest that jet formation over Ulsan airport is related to the strong northerly wind at 850 hPa in the presence of thermal forcing due to temperature contrast between valley and plain.  相似文献   

10.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   

11.
两次电线积冰过程气象条件实时观测研究   总被引:1,自引:1,他引:0       下载免费PDF全文
根据湖北地区2008年2月和2009年1月500 k V高压输电线实时观测资料,结合MICAPS常规气象资料和NCEP再分析资料,研究了湖北张恩高压输电线上电线积冰形成的天气形势和气象条件。结果表明:两次积冰过程中500 h Pa深厚的低压槽和850 h Pa低涡配合切变线靠近湖北促使积冰加重;气温和风速在两次积冰过程的形成阶段起到主要作用。  相似文献   

12.
利用珠穆朗玛峰地区定日气象站1959—2009年气象探测资料,分析了珠穆朗玛峰地区的降水、气温、高空风等气象要素变化特征并重点总结珠穆朗玛峰地区主要登山期(春季)成功登顶的天气、气候背景及大气环流形势。结果表明,5月500 hPa环流中高纬度为宽广的低值区,乌拉尔山地区基本维持长波槽或低值中心,咸海—里海和贝加尔湖附近多存在脊区;伊朗高压偏北且东伸至印度半岛,印度副热带高压与咸海、里海附近高压脊同位相叠加且北抬加强,西太平洋副热带高压维持在中南半岛以西;孟加拉湾、印度半岛低槽或低压中心建立,高原南部南支槽不明显;东亚大槽偏强、偏东。对应西藏高原和珠穆朗玛峰地区降水偏弱等特征,5月是攀登珠穆朗玛峰的最佳时机,且20时至凌晨之间更适合登顶。  相似文献   

13.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   

14.
Air temperature was monitored at 13 sites across the urban perimeter of a Brazilian midsize city in winter 2011. In this study, we show that the urban heat island (UHI) develops only at night and under certain weather conditions, and its intensity depends not only on the site's land cover but also on the meteorological setting. The urban heat island intensity was largest (6.6 °C) under lingering high-pressure conditions, milder (3.0 °C) under cold anticyclones and almost vanished (1.0 °C) during the passage of cold fronts. The cooling rates were calculated to monitor the growth and decay of the UHI over each specific synoptic setting. Over four contiguous days under the effect of a lingering high-pressure event, we observed that the onset of cooling was always at about 2 h before sunset. The reference site attained mean cooling rate of ?2.6 °C h?1 at sunset, whilst the maximum urban rate was ?1.2 °C h?1. Under a 3-day cold anticyclone episode, cooling also started about 2 h before sunset, and the difference between maximum rural (?2.0 °C h?1) and urban (?1.0 °C h?1) cooling rates diminished. Under cold-front conditions, the cooling rate was homogeneous for all sites and swang about zero throughout the day. The air temperature has a memory effect under lingering high-pressure conditions which intensified the UHI, in addition to the larger heat storage in the urban area. Cold anticyclone conditions promoted the development of the UHI; however, the cold air pool and relatively light winds smoothed out its intensity. Under the influence of cold fronts, the urban fabric had little effect on the city's air temperature field, and the UHI was imperceptible.  相似文献   

15.
The mechanism responsible for high rainfall over the Indian west coast region has been investigated by studying dynamical, thermodynamical and microphysical processes over the region for the monsoon season of 2009. The European Centre for Medium-Range Weather Forecasts wind and NCEP flux data have been used to study the large scale dynamical parameters. The moist adiabatic and multi-level inversion stratifications are found to exist during the high and low rainfall spells, respectively. In the moist adiabatic stratification regime, shallow and deep convective clouds are found coexisting. The Cloud Aerosol Interaction and Precipitation Enhancement EXperiment aircraft data showed cloud updraft spectrum ranging from 1 to 10 m s?1 having modal speed 1–2.5 m s?1. The low updrafts rates provide sufficient time required for warm rain processes to produce rainfall from shallow clouds. The low cloud liquid water is observed above the freezing level indicating efficient warm rain process. The updrafts at the high spectrum end go above freezing level to generate ice particles produced due to mixed-phase rainfall process from deep convective clouds. With aging, deep convection gets transformed into stratiform type, which has been inferred through the vertical distribution of the large scale omega and heating fields. The stratiform heating, high latent heat flux, strong wind shear in the lower and middle tropospheric levels and low level convergence support the sustenance of convection for longer time to produce high rainfall spell. The advection of warm dry air in the middle tropospheric regions inhibits the convection and produce low rainfall spell. The mechanisms producing these spells have been summarized with the block diagram.  相似文献   

16.
The synoptic and dynamic aspects of heavy rainfall occurred on 5th May 2017 and caused flash flooding in arid and semi-arid central-northern Iran is analyzed by the Weather Research and Forecasting (WRF) model. This system synoptically is attributed to a surface low-pressure centered over southern Iran extended to the central parts, linking to a mid-tropospheric tilted-trough over western Iran, and advecting significant moisture from the Mediterranean Sea and the Red Sea to the studied area. The dynamical analysis revealed that the penetration of the upper-tropospheric potential vorticity streamer up to 300 hPa level was not related to such heavy rainfall. Contrarily, the low-level factors such as extensive moisture advection, mid-tropospheric diabatic processes such as the latent heat release, daytime deep convection, and topographical impact of Zagros Mountains were found as the key factors leading to this system. This study also examines 11 different convection schemes simulated by the WRF model and verified against rainfall observation. The forecast skills of the output simulations suggest the Grell-Devenyi scheme as the superior configuration in simulating observed precipitation of the event over the area.  相似文献   

17.
This paper examines the potential for the use of artificial neural networks (ANNs) to estimate the reference crop evapotranspiration (ET0) based on air temperature data under humid subtropical conditions on the southern coast of the Caspian Sea situated in the north of Iran. The input variables for the networks were the maximum and minimum air temperature and extraterrestrial radiation. The temperature data were obtained from eight meteorological stations with a range of latitude, longitude, and elevation throughout the study area. A comparison of the estimates provided by the ANNs and by Hargreaves equation was also conducted. The FAO-56 Penman–Monteith model was used as a reference model for assessing the performance of the two approaches. The results of this study showed that ANNs using air temperature data successfully estimated the daily ET0 and that the ANNs with an R 2 of 0.95 and a root mean square error (RMSE) of 0.41 mm day?1 simulated ET0 better than the Hargreaves equation, which had an R 2 of 0.91 and a RMSE of 0.51 mm day?1.  相似文献   

18.
A detailed climatology of the cyclogenesis over the Southern Atlantic Ocean (SAO) from 1990 to 1999 and how it is simulated by the RegCM3 (Regional Climate Model) is presented here. The simulation used as initial and boundary conditions the National Centers for Environmental Prediction—Department of Energy (NCEP/DOE) reanalysis. The cyclones were identified with an automatic scheme that searches for cyclonic relative vorticity (ζ10) obtained from a 10-m height wind field. All the systems with ζ10 ≤ ?1.5 × 10?5 s?1 and lifetime equal or larger than 24 h were considered in the climatology. Over SAO, in 10 years were detected 2,760 and 2,787 cyclogeneses in the simulation and NCEP, respectively, with an annual mean of 276.0 ± 11.2 and 278.7 ± 11.1. This result suggests that the RegCM3 has a good skill to simulate the cyclogenesis climatology. However, the larger model underestimations (?9.8%) are found for the initially stronger systems (ζ10 ≤ ?2.5 × 10?5 s?1). It was noted that over the SAO the annual cycle of the cyclogenesis depends of its initial intensity. Considering the systems initiate with ζ10 ≤ ?1.5 × 10?5 s?1, the annual cycle is not well defined and the higher frequency occurs in the autumn (summer) in the NCEP (RegCM3). The stronger systems (ζ10 ≤ ?2.5 × 10?5 s?1) have a well-characterized high frequency of cyclogenesis during the winter in both NCEP and RegCM3. This work confirms the existence of three cyclogenetic regions in the west sector of the SAO, near the South America east coast and shows that RegCM3 is able to reproduce the main features of these cyclogenetic areas.  相似文献   

19.
Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.  相似文献   

20.
利用2009~2013年冬季华中电网电线覆冰在线观测系统对湖北省500 k V高压输电线路积冰状况进行实时观测获取的资料,结合MICAPS常规气象资料、探空数据及NCEP再分析资料,对湖北形成积冰的天气形势、积冰持续时间以及形成积冰的逆温层结进行研究。结果表明:积冰的高空环流形势主要是小槽发展型、横槽型和低槽东移型3类,分别占43.8%、31.2%、25%;电线积冰主要发生在每年的1月、2月、11月、12月,月平均积冰时数分别为65、42、11、9;积冰可分为降水型积冰和云雾型积冰,降水型积冰过程中,900~700 h Pa高度间存在由北至南风向切变,冷暖空气交汇形成愈加深厚的逆温对降水积冰维持与发展起到重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号