首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use galaxy surface brightness as prior information to improve photometric redshift (photo- z ) estimation. We apply our template-based photo- z method to imaging data from the ground-based VVDS survey and the space-based GOODS field from HST , and use spectroscopic redshifts to test our photometric redshifts for different galaxy types and redshifts. We find that the surface brightness prior eliminates a large fraction of outliers by lifting the degeneracy between the Lyman and 4000-Å breaks. Bias and scatter are improved by about a factor of 2 with the prior in each redshift bin in the range  0.4 < z < 1.3  , for both the ground and space data. Ongoing and planned surveys from the ground and space will benefit, provided that care is taken in measurements of galaxy sizes and in the application of the prior. We discuss the image quality and signal-to-noise ratio requirements that enable the surface brightness prior to be successfully applied.  相似文献   

2.
Measurements of clustering in large-scale imaging surveys that make use of photometric redshifts depend on the uncertainties in the redshift determination. We have used light-cone simulations to show how the deprojection method successfully recovers the real-space correlation function when applied to mock photometric redshift surveys. We study how the errors in the redshift determination affect the quality of the recovered two-point correlation function. Considering the expected errors associated with the planned photometric redshift surveys, we conclude that this method provides information on the clustering of matter useful for the estimation of cosmological parameters that depend on the large-scale distribution of galaxies.  相似文献   

3.
We present an analysis of quasar variability from data collected during a photometric monitoring of 50 objects carried out at CNPq/Laboratório Nacional de Astrofísicá, Brazil, between 1993 March and 1996 July. A distinctive feature of this survey is its photometric accuracy, ∼0.02  V  mag, achieved through differential photometry with CCD detectors, which allows the detection of faint levels of variability. We find that the relative variability, δ σ L , observed in the V band is anticorrelated with both luminosity and redshift, although we have no means of discovering the dominant relation, given the strong coupling between luminosity and redshift for the objects in our sample. We introduce a model for the dependence of quasar variability on frequency that is consistent with multiwavelength observations of the nuclear variability of the Seyfert galaxy NGC 4151. We show that correcting the observed variability for this effect slightly increases the significance of the trends of variability with luminosity and redshift. Assuming that variability depends only on the luminosity, we show that the corrected variability is anticorrelated with luminosity and is in good agreement with predictions of a simple Poissonian model. The energy derived for the hypothetical pulses, ∼1050 erg, agrees well with those obtained in other studies. We also find that the radio-loud objects in our sample tend to be more variable than the radio-quiet ones, for all luminosities and redshifts.  相似文献   

4.
Noisy distance estimates associated with photometric rather than spectroscopic redshifts lead to a biased estimate of the luminosity distribution, and produce a correlated misestimate of the sizes. We consider a sample of early-type galaxies from the Sloan Digital Sky Survey Data Release 6 for which both spectroscopic and photometric information is available, and apply the generalization of the V max method to correct for these biases. We show that our technique recovers the true redshift, magnitude and size distributions, as well as the true size–luminosity relation. We find that using only 10 per cent of the spectroscopic information randomly spaced in our catalogue is sufficient for the reconstructions to be accurate within  ∼3 per cent  , when the photometric redshift error is  δ z ≃ 0.038  . We then address the problem of extending our method to deep redshift catalogues, where only photometric information is available. In addition to the specific applications outlined here, our technique impacts a broader range of studies, when at least one distance-dependent quantity is involved. It is particularly relevant for the next generation of surveys, some of which will only have photometric information.  相似文献   

5.
We investigate the clustering of galaxies selected in the 3.6 μm band of the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular two-point correlation function is calculated for 11 samples with flux limits of S 3.6≥ 4–400 μJy, over an 8 deg2 field. The angular clustering strength is measured at >5σ significance at all flux limits, with amplitudes of A = (0.49–29) × 10−3 at 1°, for a power-law model, A θ−0.8. We estimate the redshift distributions of the samples using phenomological models, simulations and photometric redshifts, and so derive the spatial correlation lengths. We compare our results with the Galaxies In Cosmological Simulations (GalICS) models of galaxy evolution and with parametrized models of clustering evolution. The GalICS simulations are consistent with our angular correlation functions, but fail to match the spatial clustering inferred from the phenomological models or the photometric redshifts. We find that the uncertainties in the redshift distributions of our samples dominate the statistical errors in our estimates of the spatial clustering. At low redshifts (median z ≤ 0.5), the comoving correlation length is approximately constant,   r 0= 6.1 ± 0.5  h −1  Mpc, and then decreases with increasing redshift to a value of 2.9 ± 0.3  h −1 Mpc for the faintest sample, for which the median redshift is z ∼ 1. We suggest that this trend can be attributed to a decrease in the average galaxy and halo mass in the fainter flux-limited samples, corresponding to changes in the relative numbers of early- and late-type galaxies. However, we cannot rule out strong evolution of the correlation length over  0.5 < z < 1  .  相似文献   

6.
Spectroscopic confirmation of redshifts predicted by gravitational lensing   总被引:1,自引:0,他引:1  
We present deep spectroscopic measurements of 18 distant field galaxies identified as gravitationally lensed arcs in a Hubble Space Telescope image of the cluster Abell 2218. Redshifts of these objects were predicted by Kneib et al. using a lensing analysis constrained by the properties of two bright arcs of known redshift and other multiply imaged sources. The new spectroscopic identifications were obtained using long exposures with the LDSS-2 spectrograph on the William Herschel Telescope, and demonstrate the capability of that instrument to reach new limits, R ≃24; the lensing magnification implies true source magnitudes as faint as R ≃25. Statistically, our measured redshifts are in excellent agreement with those predicted from Kneib et al.'s lensing analysis, and this gives considerable support to the redshift distribution derived by the lensing inversion method for the more numerous and fainter arclets extending to R ≃25.5. We explore the remaining uncertainties arising from both the mass distribution in the central regions of Abell 2218 and the inversion method itself, and conclude that the mean redshift of the faint field population at R ≃25.5 ( B ∼26–27) is low, 〈 z 〉=0.8–1. We discuss this result in the context of redshift distributions estimated from multicolour photometry. Although such comparisons are not straightforward, we suggest that photometric techniques may achieve a reasonable level of agreement, particularly when they include near-infrared photometry with discriminatory capabilities in the 1< z <2 range.  相似文献   

7.
Future weak lensing surveys will directly probe the density fluctuation in the Universe. Recent studies have shown how the statistics of the weak lensing convergence field is related to the statistics of collapsed objects. Extending earlier analytical results on the probability distribution function of the convergence field, we show that the bias associated with the convergence field can be directly related to the bias associated with the statistics of underlying overdense objects. This will provide us with a direct method to study the gravity-induced bias in galaxy clustering. Based on our analytical results, which use the hierarchical Ansatz for non-linear clustering, we study how such a bias depends on the smoothing angle and the source redshift. We compare our analytical results with ray-tracing experiments through N -body simulations of four different realistic cosmological scenarios, and find a very good match. Our study shows that the bias in the convergence map strongly depends on the background geometry and hence can help us in distinguishing different cosmological models in addition to improving our understanding of the gravity-induced bias in galaxy clustering.  相似文献   

8.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   

9.
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1 mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850 μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ∼1 mJy. Searching deep 1.4 GHz Very Large Array (VLA) and Spitzer 3–24 μm catalogues, we identify robust counterparts for 21 1.1 mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of   z = 2.7  , somewhat higher than   z = 2.0  for  850 μm  selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift   z = 1.1460  . We measure the 850 μm to 1.1 mm colour of our sources and do not find evidence for '850 μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T , and dust emissivity indices β for the sample, concluding that existing estimates   T ∼ 30 K  and  β∼ 1.75  are consistent with these new data.  相似文献   

10.
Measuring weak lensing cosmic magnification signal is very challenging due to the overwhelming intrinsic clustering in the observed galaxy distribution.In this paper,we modify the Internal Linear Combination (ILC) method to reconstruct the lensing signal with an extra constraint to suppress the intrinsic clustering.To quantify the performance,we construct a realistic galaxy catalogue for the LSST-like photometric survey,covering 20 000 deg~2 with mean source redshift at z_s~1.We find that the reconstruction performance depends on the width of the photo-z bin we choose.Due to the correlation between the lensing signal and the source galaxy distribution,the derived signal has smaller systematic bias but larger statistical uncertainty for a narrower photo-z bin.We conclude that the lensing signal reconstruction with the Modified ILC method is unbiased with a statistical uncertainty5%for bin width?z~P=0.2.  相似文献   

11.
We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry  ( u , g , r , i , z , y )  can be complemented by space-based near-infrared (near-IR) photometry  ( J , H )  , e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo- z method we evaluate the figure of merit for the dark energy parameters  ( w 0, w a )  . We consider a DUNE -like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3–1.7 if IR filters are added onboard DUNE . Furthermore we show that with IR data catastrophic photo- z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u -band data could be as effective as the IR. We also find that about  105–106  spectroscopic redshifts are needed for calibration of the full survey.  相似文献   

12.
We present a calculation of the systematic component of the error budget in the photometric redshift technique. We make use of it to describe a simple technique that allows the assignment of confidence limits to redshift measurements obtained through photometric methods. We show that our technique, through the calculation of a redshift probability function, gives complete information on the probable redshift of an object and its associated confidence intervals. This information can and must be used in the calculation of any observable quantity that makes use of the redshift.  相似文献   

13.
We study the N H distribution in a complete sample of 88 active galactic nuclei (AGN) selected in the 20–40 keV band from INTEGRAL /Imager on Board the Integral Satellite (IBIS) observations. We find that the fraction of absorbed  ( N H≥ 1022 cm2)  sources is 43 per cent while the Compton thick AGN comprise 7 per cent of the sample. While these estimates are fully compatible with previous soft gamma-ray surveys, they would appear to be in contrast with results reported by Risaliti, Maiolino & Salvati using an optically selected sample. This apparent difference can be explained as being due to a selection bias caused by the reduction in high energy flux in Compton thick objects rendering them invisible at our sensitivity limit. Taking this into account, we estimate that the fraction of highly absorbed sources is actually in close agreement with the optically selected sample. Furthermore, we show that the measured fraction of absorbed sources in our sample decreases from 80 to ∼20–30 per cent as a function of redshift with all Compton thick AGN having   z ≤ 0.015  . If we limit our analysis to this distance and compare only the type 2 objects in our sample with the Risaliti et al. objects below this redshift value, we find a perfect match to their N H distribution. We conclude that in the low-redshift bin we are seeing almost the entire AGN population, from unabsorbed to at least mildly Compton thick objects, while in the total sample we lose the heavily absorbed 'counterparts' of distant and therefore dim sources with little or no absorption. Taking therefore this low z bin as the only one able to provide the 'true' distribution of absorption in types 1 and 2 AGN, we estimate the fraction of Compton thick objects to be ≥24 per cent.  相似文献   

14.
We investigate the clustering properties of galaxies in the recently completed ELAIS-S1 redshift survey through their spatial two-point autocorrelation function. We used a subsample of the ELAIS-S1 catalogue covering approximately 4 deg2 and consisting of 148 objects selected at 15 μm with a flux >0.5 mJy and a redshift   z < 0.5  . We detected a positive signal in the correlation function that in the range of separations  1–10  h −1 Mpc  is well approximated by a power law with a slope  γ= 1.4 ± 0.25  and a correlation length   s 0= 5.4 ± 1.2  h −1 Mpc  , at the 90 per cent significance level. This result is in good agreement with the redshift-space correlation function measured in more local samples of mid-infrared-selected galaxies such as the IRAS Point Source Catalog (PSC z ) redshift survey. This suggests a lack of significant clustering evolution of infrared-selected objects out to   z = 0.5  that is further confirmed by the consistency found between the correlation functions measured in a local  ( z < 0.2)  and a distant  (0.2 < z < 0.5)  subsample of ELAIS-S1 galaxies. We also confirm that optically selected galaxies in the local redshift surveys, especially those of the SDSS sample, are significantly more clustered than infrared objects.  相似文献   

15.
In Lima et al. we presented a new method for estimating the redshift distribution,   N ( z )  , of a photometric galaxy sample, using photometric observables and weighted sampling from a spectroscopic subsample of the data. In this paper, we extend this method and explore various applications of it, using both simulations and real data from the Sloan Digital Sky Survey (SDSS). In addition to estimating the redshift distribution for an entire sample, the weighting method enables accurate estimates of the redshift probability distribution,   p ( z )  , for each galaxy in a photometric sample. Use of   p ( z )  in cosmological analyses can substantially reduce biases associated with traditional photometric redshifts, in which a single redshift estimate is associated with each galaxy. The weighting procedure also naturally indicates which galaxies in the photometric sample are expected to have accurate redshift estimates, namely those that lie in regions of photometric-observable space that are well sampled by the spectroscopic subsample. In addition to providing a method that has some advantages over standard photo- z estimates, the weights method can also be used in conjunction with photo- z estimates e.g. by providing improved estimation of   N ( z )  via deconvolution of   N ( z phot)  and improved estimates of photo- z scatter and bias. We present a publicly available   p ( z )  catalogue for ∼78 million SDSS DR7 galaxies.  相似文献   

16.
We present the Mock Map Facility, a powerful tool for converting theoretical outputs of hierarchical galaxy formation models into catalogues of virtual observations. The general principle is straightforward: mock observing cones can be generated using semi-analytically post-processed snapshots of cosmological N -body simulations. These cones can then be projected to synthesize mock sky images. To this end, the paper describes in detail an efficient technique for creating such mock cones and images from the galaxies in cosmological simulations ( galics ) semi-analytic model, providing the reader with an accurate quantification of the artefacts it introduces at every step. We show that replication effects introduce a negative bias on the clustering signal – typically peaking at less than 10 per cent around the correlation length. We also thoroughly discuss how the clustering signal is affected by finite-volume effects, and show that it vanishes at scales larger than approximately one-tenth of the simulation box size. For the purpose of analysing our method, we show that number counts and redshift distributions obtained with galics / momaf compare well with K -band observations and the two-degree field galaxy redshift survey. Given finite-volume effects, we also show that the model can reproduce the automatic plate measuring machine angular correlation function. The momaf results discussed here are made publicly available to the astronomical community through a public data base. Moreover, a user-friendly Web interface ( http://galics.iap.fr ) allows any user to recover her/his own favourite galaxy samples through simple SQL queries. The flexibility of this tool should permit a variety of uses ranging from extensive comparisons between real observations and those predicted by hierarchical models of galaxy formation, to the preparation of observing strategies for deep surveys and tests of data processing pipelines.  相似文献   

17.
We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range  0.4 < z < 0.7  with limiting magnitude   i < 20  . The catalogue is selected from the imaging data of the Sloan Digital Sky Survey (SDSS) Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift catalogue of 13 000 intermediate-redshift LRGs provides a photometric redshift training set, allowing use of ann z, a neural network-based photometric-redshift estimator. The rms photometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is  σ z = 0.049  averaged over all galaxies, and  σ z = 0.040  for a brighter subsample  ( i < 19.0)  . The catalogue is expected to contain ∼5 per cent stellar contamination. The ann z code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies. The MegaZ-LRG catalogue is publicly available on the World Wide Web from http://www.2slaq.info .  相似文献   

18.
19.
We present the results of a detailed spectral analysis of optically faint hard X-ray sources in the Chandra deep fields selected on the basis of their high X-ray to optical flux ratio (X/O). The stacked spectra of high X/O sources in both Chandra deep fields, fitted with a single power-law model, are much harder than the spectrum of the X-ray background (XRB). The average slope is also insensitive to the 2–8 keV flux, being approximately constant around Γ≃ 1 over more than two decades, strongly indicating that high X/O sources represent the most obscured component of the XRB. For about half of the sample, a redshift estimate (in most of the cases a photometric redshift) is available from the literature. Individual fits of a few of the brightest objects and of stacked spectra in different redshift bins imply column densities in the range  1022–1023.5 cm−2  . A trend of increasing absorption towards higher redshifts is suggested.  相似文献   

20.
We present the Lensed Mock Map Facility ( lemomaf ), a tool designed to perform mock weak-lensing measurements on numerically simulated chunks of the Universe. Coupling N -body simulations to a semi-analytical model of galaxy formation, lemomaf can create realistic lensed images and mock catalogues of galaxies, at wavelengths ranging from the ultraviolet to the submillimetre. To demonstrate the power of such a tool, we compute predictions of the source–lens clustering (SLC) effect on the convergence statistics, and quantify the impact of weak lensing on galaxy counts in two different filters. We find that the SLC effect skews the probability density function of the convergence towards low values, with an intensity which strongly depends on the redshift distribution of galaxies. On the other hand, the degree of enhancement or depletion in galaxy counts due to weak lensing is independent of the SLC effect. We discuss the impact on the two-point shear statistics to be measured by future missions like SNAP and LSST . The SLC effect would bias the estimation of σ8 from two-point statistics up to 5 per cent for a narrow redshift distribution of mean   z ∼ 0.5  , and up to 2 per cent in small angular scales for a redshift distribution of mean   z ∼ 1.5  . We conclude that accurate photometric redshifts for individual galaxies are necessary in order to quantify and isolate the SLC effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号