首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuo MC  Fan K  Kuochen H  Chen W 《Ground water》2006,44(5):642-647
Mechanisms for interpreting anomalous decreases in radon in ground water prior to earthquakes are examined with the help of a case study to show that radon potentially is a sensitive tracer of strain changes in the crust preceding an earthquake. The 2003 Chengkung earthquake of magnitude (M) 6.8 on December 10, 2003, was the strongest earthquake near the Chengkung area in eastern Taiwan since 1951. The Antung radon-monitoring station was located 20 km from the epicenter. Approximately 65 d prior to the 2003 Chengkung earthquake, precursory changes in radon concentration in ground water were observed. Specifically, radon decreased from a background level of 780 pCi/L to a minimum of 330 pCi/L. The Antung hot spring is situated in a fractured block of tuffaceous sandstone surrounded by ductile mudstone. Given these geological conditions, we hypothesized that the dilation of brittle rock mass occurred at a rate faster than the recharge of pore water and gas saturation developed in newly created cracks preceding the earthquake. Radon partitioning into the gas phase may explain the anomalous decrease of radon precursory to the 2003 Chengkung earthquake. To support the hypothesis, vapor-liquid, two-phase radon-partitioning experiments were conducted at formation temperature (60 degrees C) using formation brine from the Antung hot spring. Experimental data indicated that the decrease in radon required a gas saturation of 10% developed in rock cracks. The observed decline in radon can be correlated with the increase in gas saturation and then with the volumetric strain change for a given fracture porosity.  相似文献   

2.
M. C. Tom Kuo 《Ground water》2022,60(4):510-517
Few published data are available for two-phase flow in fractures from field studies. All measurements of relative permeability reported in the literature were done in laboratory-scale. The in situ water saturations are normally not known for multiphase flow in natural fractures; therefore, the direct measurements of relative permeability are difficult in field-scale. With the help of a case study before and after the 2008 Mw 5.4 Antung earthquake, groundwater radon was used as a tracer to determine the gas and water saturations in a small naturally fractured aquifer. Well tests were also conducted to estimate aquifer transmissivity before and after the 2008 Antung earthquake. Anomalous declines in both groundwater radon concentration and transmissivity were observed precursory to the 2008 Antung earthquake. Both declines are two precursory phenomena having a common effect of gas bubbles. Using the data from well tests and radon tracer, one data point of water relative permeability can be obtained for in situ fractures. This data point reveals strong phase interference between water and gas bubbles for multiphase flow in natural fractures. Both the data of well tests and radon tracer are essential to gain an improved understanding of mass transfer behavior of groundwater-dissolved gases between water and gas phases.  相似文献   

3.
聊古-1井水氡映震能力研究   总被引:3,自引:0,他引:3       下载免费PDF全文
分析了聊古-1井水氡测值在1981年11月9日宁晋Ms5.8地震(△=150Km )前和1983年11月7日荷泽Ms5.9地震(△=150Km)前的异常变化。在地震前5~15天该井水氡出现明显的高值异常。地震发生在五降的过程中。这可能是该井水氡的一项短临异常指标。  相似文献   

4.
The magnitude (M w) 7.9 Wenchuan earthquake occurred on 12 May 2008 in the Longmen Shan region of China, the transition zone between the Tibetan Plateau and the Sichuan Basin, resulting in widespread damage throughout central and western China. The steep, high-relief eastern margin of the Tibetan Plateau has undergone rapid Cenozoic uplift and denudation accompanied by folding and thrusting, yet no large thrust earthquakes are known prior to the 2008 M w 7.9 Wenchuan earthquake. Field and excavation investigations reveal that a great historical earthquake occurred in the Sichuan region that ruptured a >200-km-long thrust fault within the Longmen Shan Thrust Belt, China, which also triggered the 2008 M w 7.9 Wenchuan earthquake. The average co-seismic slip amount produced by this historical earthquake is estimated to be 2–3 m, comparable with that caused by the 2008 Wenchuan earthquake. Paleoseismic and archaeological evidence and radiocarbon dating results show that the penultimate great earthquake occurred in the Sichuan region during the late Tang-Song Dynasty, between AD 800 and 1000, suggesting a recurrence interval of ~1,000–1,200 years for Wenchuan-magnitude (M = ~8) earthquakes in the late Holocene within the Longmen Shan Thrust Belt. This finding is in contrast with previous estimates of 2,000–10,000 years for the recurrence interval of large earthquakes within the Longmen Shan Thrust Belt, as obtained from long-term slip rates based on the Global Positioning System and geological data, thereby necessitating substantial modifications to existing seismic-hazard models for the densely populated region at the eastern marginal zone of the Tibetan Plateau.  相似文献   

5.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

6.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

7.
嘉峪关气氡浓度在多年上升的背景下,于2017年出现了转折异常变化,但祁连山地震带内一直没有发生与异常幅度和持续时间相匹配的地震,直到2021年5月22日,在距离嘉峪关气氡测点570 km的玛多发生MS7.4地震。为了判断嘉峪关气氡浓度异常与玛多地震的关系,结合震例,从异常信度、震前异常特征、震后异常变化及地质构造背景等方面对其进行深入分析。结果发现:嘉峪关气氡浓度的异常特征与地震所处的构造有关,发生在祁连山地震带内的地震,气氡浓度异常表现为1年或半年尺度的年畸变,发生在该地震带以外远距离的地震,气氡浓度异常表现为多年的趋势性变化;玛多地震发生后,嘉峪关气氡浓度下降速率减缓之后转折,呈恢复状态;嘉峪关气氡测点与玛多地震都位于青藏高原东北部,具有相同的动力背景且在构造上具有关联性。综合分析认为嘉峪关气氡多年趋势异常与玛多MS7.4地震有关,研究对建立可靠的异常指标体系、提高地震预测水平具有重要意义。  相似文献   

8.
This work generalizes the results of tomographic imaging performed by the authors for epicentral zones. Seismic events in North Africa (the M w = 5.8 earthquake of 1985 near the town of Constantine), eastern Anatolia (the Erzincan M w = 6.7 earthquake of 1992), the Lesser and Greater Caucasus (the 1988 Spitak M w = 6.8 and the 1991 Racha M w = 7.0 earthquakes), and northern Sakhalin (the 1995 Neftegorsk M w = 7.1 earthquake) are examined. It is shown how various morphokinematic types of active faults differ in the resulting tomographic images at various depths. A classification of tomographic images of strong earthquake source zones is proposed in accordance with the rank of their generating faults. The sources of the Spitak, Racha, and Erzincan earthquakes are confined to large boundary faults separating tectonic zones. Lower velocity bands are revealed in the tomographic images, and low velocity “pockets” 1–2 km or somewhat more in width penetrating to a depth of up to 15 km are observed near the fault zones. The Constantine and Neftegorsk earthquakes were generated by faults of a lower rank. The source zones of these events are imaged tomographically as narrow gradient zones.  相似文献   

9.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

10.
自1920年海原发生M8.5地震以来,青藏高原东北缘接连发生了1927年古浪M8.0地震、1932年昌马M7.6地震等一系列大地震,使其进入了强震活动的丛集期。为了探究青藏高原东北缘这一系列地震间的相互作用及区域地震危险性,建立青藏高原东北缘的三维Maxwell黏弹性有限元模型,模拟了区域自1920年以来17次M6.7以上地震的同震及震后库仑应力演化。结果显示:研究区自1920年海原M8.5大地震之后,后续的16次地震中,有13次地震发生在库仑应力变化为正的区域,说明了地震间的相互作用可能是导致区域地震丛集的主要原因之一。系列地震发生后,阿尔金断裂、柴达木盆地断裂西段、东昆仑断裂中段、鄂拉山断裂北段、共和盆地断裂南段、日月山断裂南段、庄浪河断裂、礼县—罗家堡断裂、成县盆地断裂西段、文县断裂西段、龙首山断裂南段、六盘山断裂东段、西秦岭北缘断裂东段、海原断裂西段和祁连断裂东段位于库仑应力变化为正的区域,且大部分断裂或断裂段的累积库仑应力变化超过了0.01 MPa,它们未来的地震危险性较高。  相似文献   

11.
Radon (222Rn) concentration in geothermal waters and CO2-rich cold springwaters collected weekly in duplicate samples from four stations in northern Taiwan were measured from July 1980 to December 1983. Seven spike-like radon anomalies (increases of 2 to 3 times the standard deviation above the mean) were observed at three stations. Following every anomaly except one, an earthquake ofM L above 4.6 occurred within 4 to 51 days, at an epicentral distance 14 to 45 km, and at a focal depth of less than 10 km. The distribution of the earthquakes preceded by radon anomalies is skewed in certain directions from the radon stations; the radon stations seem to be insensitive to earthquakes occurring in the other directions. At the fourth station, near a volcanic area, much gas (mainly CO2) is discharged from the well, together with hot water. A very high concentration of radon was detected in the discharged gas; therefore trapping of gas in the water can result in anomalously high radon contents. According to limited measurements, the radon concentration in water appears to be undersaturated with respect to that in gas. This suggests that hot water is very susceptible to radon loss, and monitoring of radon in gas is more desirable.  相似文献   

12.
The diurnal-variation anomalies of the vertical-component in geomagnetic field are mainly the changes of phase and amplitude before strong earthquakes. On the basis of data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of appearance time of the minima of diurnal variations (i.e, low-point time) of the geomagnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before over 30 strong earthquakes with M S≥6.6 such as Kunlunshan M S=8.1 earthquake on November 14, 2001; Bachu-Jashi M S=6.8 earthquake on February 24, 2003; Xiaojin M S=6.6 earthquake on September 22, 1989, etc. There are good relations between such rare phenomena of geomagnetic anomalies and the occurrence of earthquakes. It has been found that most earthquakes occur in the vicinity of the boundary line of sudden change of the low-point displacement and generally within four days before and after the 27th or 41st day counting from the day of appearance of the anomaly. In addition, the anomalies of diurnal-variation amplitude near the epicentral area have been also studied before Kunlunshan M S=8.1 earthquake and Bachu-Jiashi M S=6.8 earthquake. Foundation item: National Science Technology Tackle Key Project during the Tenth Five-year Plan (2001BA601B01-05-04)  相似文献   

13.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

14.
本文根据对甘肃省及邻区近几年来发生的松潘7.2级强震、礼县5.0级中强震和海原5.5级中强震前水氡短临异常的分析研究,以及对多年来收集的50个中、强震例共139泉次水氡临震突变资料的分析研究,提出了有监视能力的水氡观测网点。若氡含量出现短趋势加速上升(或下降)和临震突变的同步异常则可能是发生中、强震的一个前兆信息。据此较好地试报了1982年6月8日武威4.1级地震。  相似文献   

15.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

16.
龙门山断裂带南段岩石圈磁场变化分析   总被引:4,自引:3,他引:1       下载免费PDF全文
根据巴颜喀拉块体东部2011—2014年3期岩石圈磁场年变化情况,结合地壳应力资料,重点分析龙门山断裂带南段的岩石圈磁场变化与应力积累的关系。该区域2011—2012年和2012—2013年岩石圈磁场变化明显弱于周边区域,实测地壳应力结果反映汶川M_S8.0地震震后应力积累水平很高。压磁效应分析认为汶川M_S8.0地震后该区域高应力积累、低应变率的动力学背景是控制该区域岩石圈磁场弱变化的主要因素。此外,芦山M_S7.0地震及康定M_S6.3地震前震中区存在局部岩石圈磁场水平矢量的弱变化现象,尤其是2012—2013年水平矢量大小和方向均与周边区域相比存在明显差异,这可能是两次地震的前兆异常。  相似文献   

17.
甘东南地区水氡浓度的临界慢化现象研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文将临界慢化理论应用于甘东南地区水氡浓度观测资料的处理中,以2008年5月12日汶川MS8.0地震、2013年7月22日甘肃岷县—漳县MS6.6地震为例,计算表征临界慢化现象的自相关系数和方差。计算结果表明,甘东南地区多个台站的水氡浓度观测资料在两次地震前均存在较明显的临界慢化现象。并从空间分布、持续时间、变化形态方面分析了异常点水氡浓度变化的临界慢化特征,结合水氡异常的水动力学机制和异常点所在构造,认为2次地震前的临界慢化现象与地震的发生有一定关系。  相似文献   

18.
The N-W Himalaya was rocked by a few major and many minor earthquakes. Two major earthquakes in Garhwal Himalaya: Uttarkashi earthquake of magnitude Ms= 7.0 (mb = 6.6) on October 20, 1991 in Bhagirthi valley and Chamoli earthquake of Ms= 6.5 (mb = 6.8) on March 29, 1999 in the Alaknanda valley and one in Himachal Himalaya: Chamba earthquake of magnitude 5.1 on March 24, 1995 in Chamba region, were recorded during the last decade and correlated with radon anomalies. The helium anomaly for Chamoli earthquake was also recorded and the Helium/Radon ratio model was tested on it. The precursory nature of radon and helium anomalies is a strong indicator in favor of geochemical precursors for earthquake prediction and a preliminary test for the Helium/Radon ratio model.  相似文献   

19.
Temporal distribution of earthquakes with M w > 6 in the Dasht-e-Bayaz region, eastern Iran has been investigated using time-dependent models. Based on these types of models, it is assumed that the times between consecutive large earthquakes follow a certain statistical distribution. For this purpose, four time-dependent inter-event distributions including the Weibull, Gamma, Lognormal, and the Brownian Passage Time (BPT) are used in this study and the associated parameters are estimated using the method of maximum likelihood estimation. The suitable distribution is selected based on logarithm likelihood function and Bayesian Information Criterion. The probability of the occurrence of the next large earthquake during a specified interval of time was calculated for each model. Then, the concept of conditional probability has been applied to forecast the next major (M w > 6) earthquake in the site of our interest. The emphasis is on statistical methods which attempt to quantify the probability of an earthquake occurring within a specified time, space, and magnitude windows. According to obtained results, the probability of occurrence of an earthquake with M w > 6 in the near future is significantly high.  相似文献   

20.
The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north (~100 mm) to south (~10 mm). This earthquake revealed a near N–S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW–SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014–2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015–2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号