首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
剪切指向标志是韧性剪切带运动学和动力学研究的基础,这里系统地介绍了12种具有剪切指向意义的构造。对其中重点部分进行了理论上的探讨和详细的分析,并且指出了应用某些剪切指向标志时应当注意的问题。  相似文献   

2.
陈虹  胡健民  武国利 《地质通报》2009,28(4):439-455
韧性剪切带是大陆变形过程中形成于地壳深层次的重要构造变形形迹,是重建构造变形温压环境、变形几何学、运动学及动力学的重要研究对象。剪切变形方向的确定是韧性剪切带研究的基础环节之一。尽管指示韧性剪切带剪切方向的标志很多,但是由于韧性剪切带变形过程的复杂性,实际工作中往往很难准确地限定剪切方向,甚至常常会发现同一条韧性剪切带中发育指向相反的剪切标志。在变形岩石中,不对称旋转碎斑系被认为是判断韧性剪切带剪切方向的可靠标志。根据有拖尾的旋转碎斑系判断剪切指向要比“云母鱼”、“多米诺”等组构可靠得多。总结前人的理论和模拟试验成果,可以清楚地认识到,碎斑系的演化是其形态、轴率、初始方位、基质及其界面性质、运动学涡度、剪应变强度、剪切带的厚度、碎斑短轴比等因素综合作用的结果。深刻认识不对称旋转碎斑系在韧性剪切带形成过程中的发育过程、限制条件、影响因素,将有助于准确地运用它们来判断韧性剪切变形的构造指向,以便进一步研究与该韧性剪切变形相关的大陆动力学。  相似文献   

3.
韧性剪切带是大陆变形过程中形成于地壳深层次的重要构造变形形迹,是重建构造变形温压环境、变形几何学、运动学及动力学的重要研究对象.剪切变形方向的确定是韧性剪切带研究的基础环节之一.尽管指示韧性剪切带剪切方向的标志很多,但是由于韧性剪切带变形过程的复杂性,实际工作中往往很难准确地限定剪切方向,甚至常常会发现同一条韧性剪切带中发育指向相反的剪切标志.在变形岩石中,不对称旋转碎斑系被认为是判断韧性剪切带剪切方向的可靠标志.根据有拖尾的旋转碎斑系判断剪切指向要比"云母鱼"、"多米诺"等组构可靠得多.总结前人的理论和模拟试验成果,可以清楚地认识到,碎斑系的演化是其形态、轴率、初始方位、基质及其界面性质、运动学涡度、剪应变强度、剪切带宽度/碎斑短轴等因素综合作用的结果.深刻认识不对称旋转碎斑系在韧性剪切带形成过程中的发育过程、限制条件、影响因素,将有助于准确地运用它们来判断韧性剪切变形的构造指向,以便进一步研究与该韧性剪切变形相关的大陆动力学.  相似文献   

4.
张青  李馨 《岩石学报》2021,37(4):1000-1014
在过去的二十年里,EBSD (Electron Backscattered Diffraction),即电子背散射衍射测试技术,已广泛应用于韧性组构分析,成为变形运动学、流变学分析的常规手段。该方法主要应用于流变条件下矿物晶轴组构定向性分析,以判定流变剪切指向、对比应变强度、估算变形温度。理论上讲,EBSD法适用于所有矿物的全部晶轴定向的分析测试。然而鉴于天然变形的复杂性,笔者建议EBSD分析应以石英,特别是经历了动态重结晶的石英条带为组构分析的主要对象。长期以来,石英晶轴组构的不对称性被视作独立的剪切指向标志。然而,近年来基于天然变形和一般剪切实验的研究结果表明,塑性流变的剪切指向含义应为多重流变剪切指向标志综合判别比对的结果。尽管在提出之初,石英的轴组构开角被视作独立可靠的变形温度计(Kruhl,1998)。然而限于天然变形的复杂性,特别是对变质与变形阶段的对应、耦合的认识;尽管石英变形滑移系及石英晶轴组构开角可为动力变质温度提供重要的参考,但是石英晶轴组构开角并非独立的变形温度计。  相似文献   

5.
粤西河台金矿是一种由糜棱岩带控制的金矿床,笔者在对该矿床控矿糜棱岩的显微构造进行系统研究的基础上,指出了云母鱼和长石碎斑系是两种较为可靠的微观韧性剪切指向标志,为今后同类型金矿床的构造研究提供了有益的参考。  相似文献   

6.
刘稳航  李玮  董云鹏  屈梦梦  杨源祯 《地质通报》2015,34(10):1897-1909
韧性剪切带中赋存的椭球状应变标志体(砾石、碎斑等)是研究剪切带运动学、动力学的重要应变标志体。传统研究中椭球状标志体通过对野外露头的观测或与实验岩石学结合,判断剪切带运动方向、探讨运动学和流变学特征。随着数值模拟技术在韧性剪切带中的引入和推广,国内外许多学者试图恢复椭球状标志体的运动轨迹和变形特征,并取得了显著的成果。然而,国内文献对于模拟韧性剪切带椭球状标志体的定量及模拟研究甚少,研究方法也鲜为介绍。基于此,针对韧性剪切带中椭球状标志体变形的最新研究进展,详细介绍建立在Jeffery理论和Eshelby理论之上的数值模拟思路和方法,并利用Mathcad软件模拟了给定条件下的椭球状标志体的运动轨迹、变形特征。  相似文献   

7.
摩天岭花岗岩体为一大型韧性剪切带,岩体中广泛发育的片麻理实际上是糜棱面理,其总体走向为NNE向,倾向NWW-SWW,倾角30~70°,拉伸线理向SWW或NWW倾伏,根据S-C面理构造、长石和石英不对称眼球等剪切指向标志体判断,韧性剪切带运动学为正滑剪切。  相似文献   

8.
嘎拉山大型伸展滑脱构造发育在大兴安岭北段东坡,带内发育倾向SE的剪切面理,普遍发育层间揉皱、眼球状构造、低角度正断层、鞘褶皱和窗棂构造以及云母鱼、旋转残斑、石英条带等各种韧性变形显微组构,变形温度为300~400 ℃。各种宏观和微观不对称褶皱和线理等指向标志显示嘎拉山伸展构造为一指向SE的伸展滑脱构造。通过对剪切变形带中的花岗质片麻岩和大理岩的白云母40Ar/39Ar同位素测年获得144~147 Ma的坪年龄,该年龄代表了伸展剪切变形的形成时间。结合区域上变质核杂岩的研究,认为嘎拉山伸展构造的形成机制很可能与鄂霍茨克造山运动使地壳加厚崩塌,导致大兴安岭地区发生区域性伸展有关。  相似文献   

9.
新疆东天山地区塔水河韧性剪切带特征   总被引:1,自引:0,他引:1  
通过野外宏观构造及室内显微变形构造研究,认为该剪切带广泛发育变形岩石的各种脆韧性变形组构,显微变形构造发育,形成了塔水河韧性剪切带的典型特征及丰富的剪切指向标志。韧性剪切变形强烈,至少存在两期变形,第一期为晚奥陶世末南北向的挤压产生由南向北的逆冲推覆右旋剪切,第二期变形为石炭纪花岗岩带在上侵时受到剪切力作用而产生隆升滑脱左旋走滑变形。变形时代为晚奥陶世末和晚石炭世末,两期剪切总位移量分别为2.2km和2.46km,古差异应力值为82MPa和89MPa。  相似文献   

10.
与煤的变质程度和煤岩成分一样,煤的还原程度也是最能说明煤本性的普通标志之一。根据这种标志,可以预测煤质以及煤在各种加工工艺过程中的性状。因此,对煤的还原程度的研究具有很大的实际意义和理论意义。   相似文献   

11.
If the orientation of the principal compressive stress is oblique to layering, viscous multilayers fold in response to the layer-parallel shortening and develop asymmetric interfaces in response to the layer-parallel shear. A theoretical analysis of folding of viscous multilayers with different slip laws at layer contacts shows that the sense of asymmetry of folds is determined largely by the behavior of the layer contacts and the sense of layer-parallel shear during folding.

For a given sense of layer-parallel shear, the sense of asymmetry of folds can be reversed by changing only the behavior of the layer contacts. If the slip rate is linearly proportional to the shear stress at layer contacts, the resistance to slip is the same everywhere along interfaces, and the folds develop the sense of asymmetry of drag folds. If the slip rate is a nonlinear function of the shear stress at layer contacts, however, the resistance to slip varies with position along interfaces, and folds develop the sense of asymmetry of monoclinal kink folds.

For a given variable resistance to slip at layer contacts, the sense of asymmetry depends on the sense and magnitude of the layer-parallel shear and on the thickness-to-wavelength ratio of the multilayer.

For finite multilayers with variable resistance to slip at contacts, an increase in the layer-parallel shear stress decreases the dominant wavelength and increases the amplification factor for the initial perturbation of the interface.

The multilayer consists of linear viscous layers and is confined by thick, viscous media. Resistance to slip at layer contacts is modeled theoretically by a powerlaw relationship between rate of slip and contact shear stress. The equations, derived to 2nd order in the slopes of the interfaces, describe the growth of asymmetric folds from initial, symmetric perturbations.  相似文献   


12.
Shear markers and shear sense indicators from the Bhavani shear zone, a member of the shear system separating the northern Archaean and southern Pan African granulite terranes of the South Indian shield, with differently exhumed crustal blocks, suggest multiphase reactivation. This is revealed by textural and geochemical characteristics of mylonites which indicate an event of prograde epidote-amphibolite facies metamorphism of the previously retrograded protolith of shear zone rocks. The amphibole varies progressively from an initial magnesio-hornblende to ferrotschermakitic hornblende with increasing Al and K while the plagioclase maintains oligoclase composition (An21-25). P-T estimates suggest metamorphic conditions of 634°C - 720°C at 3.6±0.5 to 5.8±0.5 kbar. Strain partitioning during the reactivation of the shear zone prior to the Pan African event, is responsible for the gradation in the intensity of mylonitic fabric as well as some of the opposing shear sense indicators.  相似文献   

13.
A numerical strain model based on infinitesimal strain theory is presented which simulates the progressive deformation and rotation of a foliated microlithon. It can be shown that an antithetical rotation of the microlithon's foliation with respect to the bulk sense of shear is a geometric consequence of specified strain conditions. The application of the model to asymmetric shear band structures described from the Gurktal Nappe, Eastern Alps, reveals that even the internal foliation of these structures must have been rotated antithetically. This corresponds with rare field observations and supports the suitability of asymmetric shear band structures as indicators for the local sense of shear.  相似文献   

14.
Argument about shear on foliations began in the mid 19th century and continues to the present day. It results from varying interpretations of what takes place during the development of different types of foliations ranging from slaty cleavages through differentiated crenulation cleavages, schistosity and gneissosity to mylonites. Computer modelling, quantitative microstructural work and monazite dating have provided a unique solution through access to the history of foliation development preserved by porphyroblasts. All foliations involve shear in their development and most can be used to derive a shear sense. The shear sense obtained is consistent between foliation types and accords with recent computer modelling of these structures preserved within porphyroblasts relative to those in the matrix. The asymmetry of curving foliation into a locally developing new one allows determination of the shear sense along the latter foliation in most rocks. The problem of shear on fold limbs and parallelism of foliation and the flattening plane of the strain ellipse is resolved through the partitioning of shearing and shortening components of deformation into zones that anastomose around ellipsoidal domains lying parallel to the XY plane. Conflicts in shear sense occur if multiple reuse or reactivation of foliations is not recognized and allowed for but are readily resolved if taken into account.  相似文献   

15.
张建新  许志琴 《地质论评》1998,44(4):348-356
变形构造研究显示阿尔金划分成具有近水平拉伸线理的韧性左行走滑变形域和具有陡角度倾伏拉伸线理的收缩变形域。在SS与PS之间的过渡区域还发现中等角度倾伏的拉伸线理。  相似文献   

16.
三维参照变形及应变相研究评述   总被引:2,自引:0,他引:2  
三维参照变形和应变相是最近构造地质学领域中取得的重要进展,三维参照变形是理想化的三维变形分类,每一参照变形是共轴级分(拉伸、压扁或纯剪)和与其垂直的简单切组分同时作用的产物,三种可能的面理取向和三种可能的线理取向的不同组合构成六咱应变相,三维参照变形和应变相研究证明糜陵面理未必平行剪切带,可与剪切带斜交,甚至垂直,线理未必与剪切方向一致,可与剪切方向斜交,甚至垂直,出现横向面理时,剪切指向标志位于该面理内,出现横向线理时,剪切指向出现在与线理垂直的ac面理内,三维变形分析不公可解决三维分析难以解释的横向面理和线理,而且可确定共轴组分的类型及其与单剪组分的结合方式。  相似文献   

17.
The main conclusion of this study is that non-coaxial strain acting parallel to a flat-lying D1 spaced cleavage was responsible for the formation of the D2 spaced crenulation (shear band) cleavage in Dalradian rocks of Neoproterozoic-Lower Ordovician age in the SW Highlands, Scotland. The cm-dm-scale D2 microlithons are asymmetric; have a geometrically distinctive nose and tail; and show a thickened central portion resulting from back-rotation of the constituent D1 microlithons. The current terminology used to describe crenulation cleavages is reviewed and updated. Aided by exceptional 3D exposures, it is shown how embryonic D2 flexural-slip folds developed into a spaced cleavage comprising fold-pair domains wrapped by anastomosing cleavage seams. The bulk strain was partitioned into low-strain domains separated by zones of high non-coaxial strain. This new model provides a template for determining the sense of shear in both low-strain situations and in ductile, higher strain zones where other indicators, such as shear folds, give ambiguous results. Analogous structures include tectonic lozenges in shear zones, and flexural-slip duplexes. Disputes over the sense and direction of shear during emplacement of the Tay Nappe, and the apparently intractable conflict between minor fold asymmetry and shear sense, appear to be resolved.  相似文献   

18.
The rocks within the Singhbhum shear zone in the North Singhbhum fold belt, eastern India, form a tectonic melange comprising granitic mylonite, quartz-mica phyllonite, quartz-tourmaline rock and deformed volcanic and volcaniclastic rocks. The granitic rocks show a textural gradation from the least-deformed variety having coarse-to medium-grained granitoid texture through augen-bearing protomylonite and mylonite to ultramylonite. Both type I and type II S-C mylonites are present. The most intensely deformed varieties include ultramylonite. The phyllosilicate-bearing supracrustal rocks are converted to phyllonites. The different minerals exhibit a variety of crystal plastic deformation features. Generation of successive sets of mylonitic foliation, folding of the earlier sets and their truncation by the later ones results from the progressive shearing movement. The shear sense indicators suggest a thrust-type deformation. The microstructural and textural evolution of the rocks took place in an environment of relatively low temperature, dislocation creep accompanied by dynamic recovery and dynamic recrystallization being the principal deformation mechanisms. Palaeostress estimation suggests a flow stress within the range of 50–190 MPa during mylonitization.  相似文献   

19.
The results of field structural studies of the Tuapse shear zone in the Northwest Caucasus are presented. This zone is characterized by shear displacements of various scales with a dominant horizontal shear, viz., a geodynamic type of the stress state, which leads to the formation of faults with mostly lateral displacement of wings, i.e., along the strike of the fault surface. The quantitative characteristics of the local stress conditions in the shear zone (the positions of principal axes and the Lode–Nadai coefficient) are determined on the basis of cataclastic analysis and geological indicators of the paleostresses. The differences between these characteristics are considered for the large tectonic zones. Significant spatial (areal) variations in orientations of the axes of major normal stresses in the shear zone and their local weak gentle variations are evidence of a consistent general stress direction during the formation of faults during the Late Eocene–Miocene deformation epoch.  相似文献   

20.
Abstract The formation of spiral-shaped inclusion trails (SSITs) is problematical, and the two viable models for their formation involve opposite shear senses along the foliation in which the porphyroblasts are growing. One model argues for porphyroblast rotation, with respect to a geographically fixed reference frame, whereas the other argues for no such porphyroblast rotation, but instead rotation of the matrix foliation around the porphyroblast. Thus, porphyroblasts with SSITs cannot be used as shear-sense indicators until it is conclusively determined which model best explains them.
Any successful model must explain features associated with SSITs, including: (1) foliation truncation zones, (2) smoothly curving SSITs, (3) millipede microstructure, (4) total inclusion-trail curvature in median sections, (5) porphyroblasts with SSITs that have grown together, (6) evidence for relative porphyroblast displacements, (7) shear-sense indicators inside and outside porphyroblasts; (8) crenulations associated with porphyroblasts and (9) geometries in sections subparallel to spiral axes (axes of rotation). A detailed study of these features suggests that most, if not all, can be explained by both the rotational and non-rotational models, in spite of these models involving diametrically opposed movement senses. Therefore, geometrical analysis of individual porphyroblast microstructures may not determine which model best explains SSITs until the kinematics required to form these microstructures are better understood, in particular the sense of shear along a developing crenulation cleavage. Specific tests for determining the shear sense along crenulation cleavages are proposed, and results of such tests may conclusively resolve the debate over how SSITs form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号