首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李唐 《天文学报》2023,64(1):5-43
在大科学时代,大科学工程的建设日益复杂,设计者需综合考虑设备性能、技术储备、经费、风险、环境等因素才能进行合理决策.在国内外天文学发展的背景中,梳理了500 m口径球面射电望远镜(Five-hundredmeter Aperture Spherical radio Telescope, FAST)概念形成的过程以及FAST团队在其中所做的决策,包括大望远镜中国方案的设想、先导单元的提出、主动反射面技术的采用等,并对决策过程进行了分析探讨. FAST诞生于我国与国际天文学发展的互动与融合进程,实现了从跟进到占据先机的转变,可为在相关基础薄弱的领域建设大科学工程提供参考.  相似文献   

2.
目前 ,已有 1 0架口径 8~ 1 0m的地面大望远镜建成并投入科学观测。在近红外波段 ,自适应光学和干涉术已在大望远镜上获得成功。Hubble空间望远镜发射至今已逾 1 2年。为了研究早期宇宙 ,探测类地行星等 ,2 0 0 2年 9月NASA已与TWR公司签约 ,研制口径≥ 6m的下一代空间望远镜JWST ,计划2 0 1 0年发射。许多口径 30~ 1 0 0m的地面未来巨型望远镜FGT项目已经提出。本报告 ,也介绍了我国正在研制或预研中的三个大项目 :LAMOST、FAST和SST ,这些项目虽较小 ,但完成后都会对天文学的一个方面作出有份量的贡献。最后 ,报告人建议我国参与到与国外合作研制FGT或NGST的工作中 ,特别强调要有天文学家和工程专家参与进去  相似文献   

3.
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) is by far the largest telescope of any kind ever built. FAST produced its first light in September 2016 and it is now under commissioning, with normal operation to commence in late 2019. During testing and early science operation, FAST has started making astronomical discoveries, particularly pulsars of various kinds, including millisecond pulsars, binaries, gamma-ray pulsars, etc. The papers in this mini-volume propose ambitious observational projects to advance our knowledge of astronomy, astrophysics and fundamental physics in many ways.Although it may take FAST many years to achieve all the goals explained in these papers, taken together they define a powerful strategic vision for the next decade.  相似文献   

4.
Our knowledge of the solar system encourages us to believe that we might expect exomoons to be present around some known exoplanets. With present hardware and existing optical astronomy methods, we do not expect to be able to find exomoons for at least 10 years, and even then, it will be a hard task to detect them. Using data from the Exoplanet Orbit Database(EOD) we find stars with Jovian exoplanets within 50 light years. Most of them will be fully accessible by the new radio telescope, the Five-hundred-meter Aperture Spherical radio Telescope(FAST), under construction which is now in the test phase. We suggest radio astronomy based methods to search for possible exomoons around two exoplanets.  相似文献   

5.
Radio Frequency Interference(RFI)mitigation is essential for supporting the science output of Five-hundred-meter Aperture Spherical radio Telescope(FAST)due to its high sensitivity.In order to protect FAST from RFI,an Electromagnetic Compatibility(EMC)study has been carried out and the operation of a Radio Quiet Zone(RQZ)is ongoing.RFI measurements of the telescope instruments and monitoring of the active radio services outside the site have revealed the radiation properties of the RFI sources.Based on the measurement results and theoretical analysis,various EMC methods have been implemented for the telescope to decrease the RFIs.Meanwhile,the main RFI sources in the FAST RQZ,such as mobile stations,broadcast stations and navigation instruments,have been identified,and the technical measures have been adopted to protect the quiet radio environment around the site.The early science outputs of FAST have demonstrated the efficiency of RFI mitigation methods.  相似文献   

6.
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)is the largest single-dish radio telescope in the world,and is now being commissioned after the first light in September 2016.Very long baseline interferometry(VLBI)is among the key science topics according to the original design.The FAST VLBI system has been established,and the first VLBI fringe has been successfully obtained.FAST will significantly improve the sensitivity of the existing VLBI networks in the future,and some science projects in need of high sensitivity will benefit from its participation.  相似文献   

7.
The reflector of the Five-hundred-meter Aperture Spherical radio Telescope(FAST)consists of 4450 reflector units.Installation of the reflector faces the challenges of large span,complex terrain,serious interference,complex processes,high position and inability to use conventional equipment.The installation technology for the flexible reflector with a large span was specially studied and designed.Two half-span arc-moving cable cranes and two transfer trucks were jointly operated along a path that follows a circular beam.After installation of the reflector was completed,two half-span cable cranes were merged into a set of full-span cable cranes for maintenance of the reflector.Installation of the reflector combines features of unit and site topography of FAST.The installation technology follows scientific and reasonable practices,and is highly efficient and convenient.It represents a breakthrough in many key technologies in construction and maintenance techniques.It has promoted related technical progress in the construction and maintenance of complex projects.It has also provided an important reference for the construction and maintenance of similar projects,and has strong significance and applicability.  相似文献   

8.
An active reflector is one of the three main innovations incorporated in the Five-hundredmeter Aperture Spherical radio Telescope(FAST).The deformation of such a huge spherically shaped reflector into different transient parabolic shapes is achieved by using 2225 hydraulic actuators which change the position of the 2225 nodes through the connected down tied cables.For each different tracking process of the telescope,more than 1/3 of these 2225 actuators must be in operation to tune the parabolic aperture accurately and meet the surface error restriction.This means that some of these actuators are inevitably located within the main beam of the receiver,and Electromagnetic Interference(EMI)from the actuators must be mitigated to ensure the scientific output of the telescope.Based on the threshold level of interference detrimental to radio astronomy described in ITU-R Recommendation RA.769 and EMI measurements,the shielding efficiency(SE)requirement for each actuator is set to be 80 d B in the frequency range from 70 MHz to 3 GHz.Therefore,Electromagnetic Compatibility(EMC)was taken into account in the actuator design by measures such as power line filters,optical fibers,shielding enclosures and other structural measures.In 2015,all the actuators had been installed at the FAST site.Till now,no apparent EMI from the actuators has been detected by the receiver,which demonstrates the effectiveness of these EMC measures.  相似文献   

9.
Software development costs for the Square Kilometre Array are likely to be very large – in the range of 1000–2000 person-year a total. This level of software effort is unprecedented in radio astronomy. Consequently the risk associated with software development is very large. This is common to many large science projects and so we can learn from such projects how to best mitigate against the risk. We present a shopping list of suggestions drawn from the experience in other projects.  相似文献   

10.
FAST在深空探测中的应用前景   总被引:4,自引:0,他引:4  
苏彦 《天文学报》2001,42(1):61-69
FAST(Five hundred meters Aperture Spherical Telescope)拟利用贵州省的喀斯特洼地,建立世界上最大的500米口径的球面射电望远镜。主动反射面新概念的提出,实现了望远镜的宽频带和全偏振能力;馈源及支撑系统简化的方案,使FAST对天体和航天器的跟踪范围得到很大的补充。分析预研中的FAST的测控功能,并论证其在未来深空网(DSN)中的重要作用和地位及开展国际合作的可能性。  相似文献   

11.
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) will become one of the world-leading telescopes for pulsar timing array(PTA) research. The primary goals for PTAs are to detect(and subsequently study) ultra-low-frequency gravitational waves, to develop a pulsar-based time standard and to improve solar system planetary ephemerides. FAST will have the sensitivity to observe known pulsars with significantly improved signal-to-noise ratios and will discover a large number of currently unknown pulsars. We describe how FAST will contribute to PTA research and show that jitter-and timing-noise will be the limiting noise processes for FAST data sets. Jitter noise will limit the timing precision achievable over data spans of a few years while timing noise will limit the precision achievable over many years.  相似文献   

12.
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)was launched on 2016 September 25.From early 2017,we began to use the FAST wideband receiver,which was designed,constructed and installed on the FAST in Guizhou,China.The front end of the receiver is composed an uncooled Quad Ridge Flared Horn feed(QRFH)with the frequency range of 270 to 1620 MHz,and a cryostat operating at 10 K.We have cooperated with the Institute of Automation of the Chinese Academy of Sciences to develop the China Reconfigurable ANalog-digital backEnd(CRANE).The system covers the 3 GHz operating band of FAST.The hardware part of the backend includes an Analog Front-end Board,a wideband high precision Analog Digital Converter,and a FAST Digital Back-end.Analog circuit boards,field programmable gate arrays,and control computers form a set of hardware,software,and firmware platforms to achieve flexible bandwidth requirements through parameter changes.It is also suitable for the versatility of different astronomical observations,and can meet specific requirements.This paper briefly introduces the hardware and software of CRANE,as well as some observations of the system.  相似文献   

13.
500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical Radio Telescope,FAST)是一个超大口径的可动望远镜,有三项技术创新,一是选址,二是轻型馈源索支撑,三是主动反射面。在主动反射面上,单元面板的面型和面板的出厂加工精度对电磁波在反射面的汇聚有很大影响。FAST主反射面由4 600块三角形反射面板拼接而成,每块面板为边长11 m三角形,这对FAST反射面面板的测量技术提出了更高的要求。摄影测量直接在影像上进行量测,无需接触物体本身;所摄影像信息丰富,可以从中获得所研究物体的大量几何信息和物理信息;适用于大范围、多目标测量,效率高。目前世界上最大的射电望远镜,如GBT和ARECIBO都是采用摄影测量技术进行反射面面形检测。在对现有的面型检测技术调研并试验后,提出基于数字近景摄影测量的方法,对FAST反射面11 m单元面板的面型进行检测,数分钟完成反射面板面型的一次检测,测量精度达到2.5 mm,经过调整后的单元面板的面型精度达到了3.0 mm,结果表明摄影测量应用于FAST反射面单元面板面型检测是可行的。  相似文献   

14.
Radio frequency interference (RFI) identification is a key step in radio data processing. In order to efficiently process huge volumes of data produced by modern large radio telescopes, such as the Five-hundred-meter Aperture Spherical radio Telescope (FAST), exceptional balance between accuracy and performance (throughput) is required for RFI flagging algorithms. RFI-Net is a single-process RFI identification package based on deep learning technique, and has achieved a higher flagging accuracy than the classical SumThreshold method. In this paper, we present a scalable RFI flagging toolkit, which can drive parallel workflows on multi-CPU and multi-GPU clusters, with RFI-Net as its core detector. It can automatically schedule the workload and aggregate itself after errors according to the running environment. Moreover, its main components are all pluggable, and can be easily customized according to requirements. The experiments with real data of FAST showed that using eight parallel workflows, the toolkit can process sky survey data at a speed of 66.79 GB/h, which means quasi-real-time RFI flagging can be achieved considering the data rate of FAST extragalactic spectral line observations.  相似文献   

15.
Using the generic hydrodynamic model of gamma-ray burst(GRB) afterglows, we calculate the radio afterglow light curves of low luminosity, high luminosity,failed and standard GRBs in different observational bands of FAST’s energy window.The GRBs are assumed to be located at different distances from us. Our results rank the detectability of GRBs in descending order as high luminosity, standard, failed and low luminosity GRBs. We predict that almost all types of radio afterglows except those of low luminosity GRBs could be observed by a large radio telescope as long as the domains of time and frequency are appropriate. It is important to note that FAST can detect relatively weak radio afterglows at a higher frequency of 2.5 GHz for very high redshift up to z = 15 or even more. Radio afterglows of low luminosity GRBs can only be detected after the completion of the second phase of FAST. FAST is expected to significantly expand the sample of GRB radio afterglows in the near future.  相似文献   

16.
Driven by the technological advancements and scientific objectives, the data acquisition in observational astronomy has been changed greatly in recent years. Fully automated or even autonomous ground-based network of telescopes has now become a tendency for time-domain observational projects. The Stellar Observations Network Group (SONG) is an international collaboration with the participation and contribution of the Chinese astronomy community. The scientific goal of SONG is time-domain astrophysics, such as the astroseismology and the research of variable stars in open clusters. The SONG project aims to build a global network of one-meter telescopes equipped with high-precision and high-resolution spectrographs, and two-channel lucky-imaging cameras. It is the Chinese initiative to install a 50 cm binocular photometry telescope at each SONG node to share the network platform and infrastructure. This work is focused on the design and implementation of SONG/50BiN in technology and methodology, for the ground-based network composed of multiple sites and a variety of instruments.  相似文献   

17.
我国天文大科学设备郭守敬望远镜(Large Sky Area Multi-Object Fiber Spectroscopic Telescope,LAMOST)、慧眼硬X射线调制卫星(Hard X-ray Modulation Telescope, HXMT)以及500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope, FAST)陆续建成使用,急需大量从事天文前沿科学研究的创新人才.然而,天文专业发展的区域分布不均衡严重影响了天文专业人才的培养.贵州师范大学立足于天文学科发展需求和贵州省省情,成立了“南仁东”创新人才实验班(简称南仁东班).同时,贵州师范大学通过与中国科学院国家天文台院校协同,借助其教育和科研资源优势,探索与实践了科研型天文创新人才培养的新模式.在课程思政、人才培养和师资队伍建设等方面取得了较好的成绩.“院校协同,培养科研型天文创新人才”的人才培养模式对西部地区乃至全国开展天文专业人才培养具有重要的借鉴价值.  相似文献   

18.
The UN/ESA workshops aim to foster the development of basic space science in developing countries. It is argued that the involvement of these countries in international collaborations in ground-based astronomy is an effective method of achieving this aim. A brief analysis of patterns of international cooperation in ground-based astronomy is presented. Where possible, the discussion is illustrated with examples chosen to highlight contributions by developing countries. Mechanisms to support international cooperation are discussed, along with some problems and possible solutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status of FAST’s performance and demonstrate the key technologies applied to FAST.The presented performance parameters can provide an important reference for scientists to propose observations with FAST.The key technologies presented in these papers include design and implementation in the measurement and control system,electromagnetic compatibility system,and receiver system.Finally,scientific achievements obtained by FAST during the commissioning phase are also reported.  相似文献   

20.
The reflector system of Five-hundred-meter Aperture Spherical radio Telescope(FAST) is designed as 4450 rigid panels supported by a flexible cable-net structure. We use 10 total stations to measure2225 nodes of the cable-net and then control the shape of the reflectors. Every time, it takes at least 35 minutes to finish the calibration of the whole cable-net once. It is indeed far too inefficient. Thus, we developed a set of highly efficient instrument CRRS(CCD Rotation Ranging System). It is based on photogrammetry and can finish the measurement in 1 minute. However, the target we used in CRRS is active target, and it has serious electromagnetic interference problems to affect the use of FAST. Take the above reasons into consideration, we plan to identify the nodes by taking the gap between the reflector panels as the feature condition. The new method can take the place of active targets to finish the measuring task. The present work focuses on the following aspects. First, combined with the characteristics of FAST reflector images,the representative algorithms of image edge detection are discussed. Second, the process of node extraction is introduced in detail so that we know that it works. In addition, experimental results are given to draw a conclusion so that Canny algorithm was used for continuous research of reflector edge detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号