首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the selective separation of Ag, Cd, Cr, Cu, Ni, Pb and Zn in traces from solutions of calcite (CaCO3), dolomite (CaMg(CO3)2) and gypsum (CaSO4.2H2O) before their determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES) is presented. The expected interferences of Ca and Mg on intensities of trace analytes were removed by collecting the elements of interest with cobalt(III) hexamethylenedithiocar-bamate, Co(HMDTC)3. The flotation of aqueous solutions (1 l) of calcite, dolomite and gypsum was performed at pH 6.0, by 1.5 mg l−1 Co and 0.6 mmol l−1 HMDTC. To minimise the effect of the reaction between Ca/Mg, which restrains the function of the surfactant, careful selection of the most suitable foaming reagent was necessary. The accuracy of the method was established by analysing natural alkaline-earth minerals by the standard addition method as well as using the dolomite reference materials GBW 07114 and GSJ JDo-1. The ICP-AES limits of detection following flotation on different minerals were found to be 0.080 μg g−1 for Cd, 0.105 μg g−1 for Ag, 0.142 μg g−1 for Cu, 0.195 μg g−1 for Cr, 0.212 μg g−1 for Ni, 0.235 μg g−1 for Zn and 0.450 μg g−1 for Pb.  相似文献   

2.
van der Kruk  J.  Slob  E.C.  Fokkema  J.T. 《Geologie en Mijnbouw》1998,77(2):177-188
Characterization of the shallow subsurface (0.25 to 10 m) is of growing importance for engineering activities, solutions of environmental problems, and archaeological investigations. Ground-penetrating radar (GPR) is an appropriate technique considering the depth range of interest, the strength of electric and magnetic contrasts between different subsurface layers and buried objects, and the required resolution. GPR surveys can detect subsurface structures by recording electromagnetic reflections from discontinuities. The detectability of objects and the delineation of subsurface structures increases with increasing wave velocity and conductivity differences between the object and its surroundings or between adjacent layers. However, unwanted reflections from objects above the surface influence the images. Shielded antennas can be used to avoid strong reflections from these objects. The data thus obtained are, however, more difficult to interpret. The fundamentals of GPR and two different acquisition setups for a GPR system are discussed. Basic interpretation tools for travel-time and velocity estimation are described, and finally, case studies are presented, followed by conclusions.  相似文献   

3.
A suite of metapelitic, basic and quartzofeldspathic rocks intruded by enderbitic gneiss from the southernmost tip of the Eastern Ghats Belt, India, and metamorphosed at c. 750–800  °C, 6  kbar, were subjected to repeated ductile shear deformation, hydration, cooling and accompanying alkali metasomatism along narrow shear zones. Gedrite-bearing assemblages developed in the shear zones traversing metapelitic rocks. Interpretation of the reaction textures in an appropriate P–T  grid in the system FMASH, an isothermal–isobaric μ H2O– μ Na2O grid in the system NFMASH, and geothermobarometric data suggest a complex evolutionary history for the gedrite-bearing parageneses. Initially, gedrite-bearing assemblages were produced due to increase in μ Na2O at nearly constant but high μ H2O accompanying cooling. Gedrite was partially destabilized to orthopyroxene+albite due to progressively increasing μ Na2O. During further cooling and at increased μ H2O a second generation of gedrite appeared in the rocks.  相似文献   

4.
. Sinkholes are near-surface indicators of active karst features at depth, such as cavities, conduits and solutionally enlarged fractures. This study tests the usefulness of ground-penetrating radar (GPR) to identify and locate buried sinkholes as a means of interpreting the existence of these subsurface hydraulically-active karst features. GPR survey was made at the Ghor al Haditha area west of the Jordan-DSTF in the Jordan Valley Escarpment at the eastern Dead Sea shoreline. GPR profiles (100 MHz) made along the eastern Dead Sea shoreline showed a trough-like pattern of radar reflections outlining a series of possible filled sinkholes. This feature is about 38 m wide and about 12 m deep. Its width is consistent with the width of the feature obtained from the topographic map of the area. The GPR survey suggests that this feature has been filled with relatively dense and resistive materials. This structure lies almost directly above a major water bearing zone.  相似文献   

5.
The Fanta Stream site is an archaeological and paleontological locality in Addis Ababa, Ethiopia. The site contains a rich assemblage of fossil mammals and Acheulean artifacts of approximately 600 ka located in a rare high‐altitude context. A ground‐penetrating radar (GPR) survey was conducted in order to provide three‐dimensional imaging of the subsurface, which the authors use to interpret the geometry and distribution of fossil‐containing stratigraphic units. Utilizing the stream's natural cut bank exposure, we calibrate GPR data to known geologic units through radar facies analysis. Shallow, high‐amplitude coherent reflection geometries are attributed to volcanic tuff deposits, as these units exhibit subparallel continuous reflections consistent with planar stratified sedimentary deposition. Deeper, discontinuous reflection packages are interpreted as conglomeritic, fossil‐containing deposits. The results of the GPR survey outline the location of the Fanta Stream's paleodepositional features as well as suggest the extent of fossiliferous stratigraphic units for use in future excavations.  相似文献   

6.
The geological characterization of the shallow subsurface in the unconsolidated sediments of the Atlantic Coastal Plain, and other unconsolidated sediment regimes, may involve jointing, faulting, and channeling not readily detectable by conventional drilling and mapping. A knowledge of these features is required in environmental, geotechnical, and geomorphological studies. Ground-penetrating radar (GPR) may be used to routinely map these structures. Three principal shallow subsurface features are readily detectable using GPR: paleochannels, joints or fractures, and faults. The detection of paleochannels is dependent on the scale of the GPR survey and the attitude of the channel within the survey area. Channel morphological features such as scour surfaces, point bars, and thalwegs are observable. Joints and fractures are more difficult to detect depending upon size, patterns, orientation, and fill material. Vertical joints may not be visible to radar unless they are wider than the sampling interval or are filled with radar-opaque materials such as limonite. Angled joints or fractures may be distinguished by an apparent continuous reflector on the radar profile. Faulting on radar profiles may be observed by the offset of reflectors, the image of the fault plane, or the coherent interpretation of a fault system.  相似文献   

7.
Florias Mees 《Sedimentology》2001,48(6):1225-1233
A salt crust from an ephemeral saline lake in northern Namibia includes a basal thenardite layer (Na2SO4), followed by intervals consisting of burkeite (Na6(CO3)(SO4)2) with a palisade-type fabric that are separated by layers of fine-grained burkeite. All palisade burkeite formed as coatings along the sides of the neighbouring intervals and around thin lenses of fine-grained burkeite. During the development of these coatings, the original constituents of the intervals that they now occupy were dissolved. Textural features indicate that the dissolved deposits were composed at least in part of halite crystals. The study of this crust illustrates the complexity of evaporite sedimentation in ephemeral saline lakes where more than one dominant mineral is formed. In the studied basin, selective dissolution of the most soluble salts occurred during flooding stages, partly affecting subsurface occurrences that consisted of continuous beds. The final product is a nearly monomineralic deposit, derived from a layered non-monomineralic formation. The deposit developed to a large extent by subsurface crystal growth in a subaqueous setting, rather than by mineral formation along the brine–sediment interface or under subaerial conditions.  相似文献   

8.
We present an approach for tracing the fate of anthropogenic CO2, compiling a large data set of stable organic carbon isotope ratios from surface sediments, plankton, and sinking matter in the Atlantic Ocean. The δ13C values of sinking matter are generally lower by 0.5–4.6‰ compared to the surface sediments. This difference increases with increasing latitude, which is explained by a stronger modern increase in surface water [CO2 (aq)] in the Southern Ocean relative to the Tropical/Subtropical Ocean. Preindustrial dissolved CO2 concentrations in Atlantic surface waters, estimated from the δ13Corg of surface sediments, are compared to recently measured surface water [CO2 (aq)] values taken from literature. We obtain only a slight increase in [CO2 (aq)] at lower latitudes but a significant change of about 7 ± 2 μ m in high latitudinal surface waters which we attribute to anthropogenic perturbation. Our results suggest that CO2 released by human activities has been stored in Southern Ocean surface waters.  相似文献   

9.
A combined study of radar profiles and thin section analysis supported by modelling of synthetic radar traces reveals that ground-penetrating radar (GPR) reflections generated in diagenetically altered sandstones cannot always be interpreted unequivocally. This is illustrated in the Luxembourg Sandstone Formation, which has been altered diagenetically by selective carbonate cementation and fracturing. Cemented lenses and concretions developed along the bedding planes, especially at places with high primary carbonate content. Cementation resulted in the alternation of cemented carbonate-rich sandy layers (thickness 30–50 cm and variable length) and uncemented carbonate-poor sandstone layers. The ability of GPR to detect the geometry of these lenses and vertical fractures with centimetre apertures has been tested at several antenna frequencies (100, 200, 250 and 500 MHz). Relative dielectric permittivity calculations were carried out to assess variations of this electric property within the cemented and uncemented layers as a function of porosity, calcite and water content in the pores. Two-dimensional full waveform modelling was also carried out to study the effect of conductivity in the sandstones and the effect of interlayer clay seams. At the penetration depth of the radar (7 m with 250 MHz), cemented lenses and concretions could only be detected with GPR when the porosity contrast was sufficiently high, which is not always the case. This conclusion is supported by the modelling. The data also proved the ability of radar to detect large open vertical fractures along which sandstones are weathered. The study has implications for investigations which will use GPR to detect three-dimensional distribution of diagenetic pore filling precipitates as well as secondary porosity development along fractures.  相似文献   

10.
Sinkhole collapse is one of the main limitations in the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Ground-penetrating radar (GPR) and electrical resistivity imaging or tomography (RESTOM) are well suited to mapping sinkholes because of the ability of these two techniques for detecting voids and discriminating subtle resistivity variations. Nine GPR profiles and two-dimensional electrical resistivity tomography have been applied, with relative success, to locate paleo-collapses and cavities, and to detect and characterize karst at two sinkhole sites near Cheria City where limestone is covered by about 10 m of clayey soils. The survey results suggest that GPR and RESTOM are ideal geophysical tools to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

11.
In this contribution we evaluate the capabilities of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) using a 12 μm spot size. Precision, accuracy and detection limits were assessed on the USGS BCR-2G reference material. We demonstrate that the 12 μm LA-ICP-MS analyses of experimentally-grown amphibole and garnet are in excellent agreement with secondary ion mass spectrometry (SIMS) trace element determinations on the same crystals. The 12 μm spot size configuration was subsequently used to determine trace element crystal-melt partition coefficients (Dc/m) for a wide range of trace elements in amphibole in equilibrium with a basanitic melt. The following strategy to determine accurately and evaluate Dc/m is proposed. One or more major elements determined previously by electron probe microanalysis (EPMA) was used to ensure consistency between EPMA and the composition of the aerosol produced by the laser ablation. Measured Dc/m values were successively evaluated using the lattice strain model. The use of this strategy significantly improved the precision and accuracy of Dc/m determination when a LA-ICP-MS configuration with a high spatial resolution was employed.  相似文献   

12.
M. R. LEEDER 《Sedimentology》1983,30(4):485-491
ABSTRACT Bagnold's dynamic theory for sediment suspension requires that the immersed weight of suspended grains over unit bed area is supported by an upward-directed residual Reynolds stress, τyy, arising from asymmetrical shear turbulence. The present paper presents an analysis of previously published turbulence data which confirms the existence of this residual stress and indicates its generation in the lowermost part of the buffer layer of turbulent shear flows. The magnitude of τyy is estimated as about 0.3τyx. Calculations from experimental data on suspended fine sand transport over upper phase beds reveals that τyy, is in approximate equilibrium with the weight stress due to the suspended load.  相似文献   

13.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   

14.
Ground penetrating radar (GPR) surveys of unit and compound braid bars in the sandy South Saskatchewan River, Canada, are used to test the influential facies model for sandy braided alluvium presented by Cant & Walker (1978) . Four main radar facies are identified: (1) high‐angle (up to angle‐of‐repose) inclined reflections, interpreted as having formed at the margins of migrating bars; (2) discontinuous undular and/or trough‐shaped reflections, interpreted as cross‐strata associated with the migration of sinuous‐crested dunes; (3) low‐angle (< 6°) reflections, interpreted as formed by low‐amplitude dunes or unit bars as they migrate onto bar surfaces; and (4) reflections of variable dip bounded by a concave reflection, interpreted as being formed by the filling of channel scours, cross‐bar channels or depressions on the bar surface. The predominant vertical arrangement of facies is discontinuous trough‐shaped reflections at the channel base overlain by discontinuous undular reflections, overlain by low‐angle reflections that dominate the deposits near the bar surface. High‐angle inclined reflections are only found near the surface of unit bars, and are of relatively small‐scale (< 0·5 m), but can be found at a greater range of depths within compound bars. The GPR data show that a high spatial variability exists in the distribution of facies between different compound bars, with facies variability within a single bar being as pronounced as that between bars. Compound bars evolve as an amalgamation of unit bars and other compound bars, and comprise a facies distribution that is representative of the main bar types in the South Saskatchewan River. The GPR data are compared with the original model of Cant & Walker (1978) and reveal a much greater variability in the scale, proportion and distribution of facies than that presented by Cant & Walker (1978) . Most notably, high‐angle inclined strata are over‐represented in the model of Cant and Walker, with many bars being dominated by the deposits of low‐ and high‐amplitude dunes. It is suggested that further GPR studies from a range of braided river types are required to properly quantify the full range of deposits. Only by moving away from traditional, highly generalized facies models can a greater understanding of braided river deposits and their controls be established.  相似文献   

15.
We provide new geological and isotope geochemical constraints on the evolution from continental rifting to sea-floor spreading along a segment of the Jurassic Tethyan margin exposed in the Platta and Err nappes (eastern Central Alps). Field observations show that the ocean–continent transition zone is characterized by oceanward-dipping detachment faults leading to the exhumation of subcontinental mantle rocks subsequently intruded by gabbro bodies and dolerite dikes, and covered by pillow basalts and radiolarites. Zircons extracted from gabbros and albitite yield concordant U–Pb ages of 161 ± 1 Ma; their initial ɛHf (+ 14.4 to + 14.9) as well as bulk rock ɛNd values of from gabbros and basalts (+ 7.3 to + 9.5) point to a MORB-type depleted mantle source. These data suggest that the onset of magmatic activity coincides with the latest phase of mantle exhumation along low-angle detachment faults and may be controlled by upwelling asthenosphere beneath a zone of exhumed continental mantle.  相似文献   

16.
Carbon dioxide records from polar ice cores and marine ocean sediments indicate that the last glacial maximum (LGM) atmosphere CO2 content was 80–90 ppm lower than the mid-Holocene. This represents a transfer of over 160 GtC into the atmosphere since the LGM. Palaeovegetation studies suggest that up to 1350 GtC was transferred from the oceans to the terrestrial biosphere at the end of the last glacial. Evidence from carbon isotopes in deep sea sediments, however, indicates a smaller shift of between 400 and 700 GtC. To understand the functioning of the carbon cycle this apparent discrepancy needs to be resolved. Thus, older data have been reassessed, new data provided and the potential errors of both methods estimated. New estimates of the expansion of terrestrial biomass between the LGM and mid-Holocene are 700 GtC ± > 300 GtC, using the ocean carbon isotope-based method, compared with of 1100 GtC ± > 500 GtC using the palaeovegetation estimate. If these estimates of the carbon shift to the terrestrial biosphere are equilibrated with the dissolved carbon in the oceans, and the CaCO3 compensation of the ocean is taken into account, then the glacial atmospheric CO2 would have been between 50 (± 30) ppm and 95 (± 50) ppm higher. The glacial atmosphere therefore should have had a CO2 partial pressure of between 330 and 375 μatm. Hence, a rise of between 130 and 175 μatm in atmospheric CO2, rather than 80 μatm, at the end of the last glacial must be accounted for.  相似文献   

17.
Stalagmite SV1 from Grotta Savi, located at the SE margin of the European Alps (Italy), is the first Alpine speleothem that continuously spans the past c . 17kyr. Extension rate and δ18Oc record for the Lateglacial probably reflect a combination of temperature and rainfall, with rainfall exerting the dominant effect. Low speleothem calcite δ18 Oc values were recorded from c . 14.5 and 12.35 kyr, during GI-1 (Bølling— Allerød) interstadial, which in our interpretation, was warm and wet. The GS-1 (Younger Dryas) was characterized by a shift to heavier δ18 Oc, coinciding with δ13Cc enrichment and extremely low extension rate (<8 μm/year). These characteristics indicate that GS-1 climate was cool and dry in the SE Alps. Calibration using historical data revealed that there is a positive δ18Oc/dT relationship. A 1°C rise in mean annual temperature should correspond to c . 2.85% increase of SV-1 δc18Oc. We reconstructed a slow and steady temperature rise of c . 0.5°C since 10 kyr BP, in broad agreement with reconstructions from pollen data for SE Europe. Stalagmite SV1 indicates that climate variability in the SE Alps has been influenced by the Mediterranean Sea for the past c . 17 kyr.  相似文献   

18.
Efforts to map the lithology and geometry of sand and gravel channel‐belts and valley‐fills are limited by an inability to easily obtain information about the shallow subsurface. Until recently, boreholes were the only method available to obtain this information; however, borehole programmes are costly, time consuming and always leave in doubt the stratigraphic connection between and beyond the boreholes. Although standard shallow geophysical techniques such as ground‐penetrating radar (GPR) and shallow seismic can rapidly obtain subsurface data with high horizontal resolution, they only function well under select conditions. Electrical resistivity ground imaging (ERGI) is a recently developed shallow geophysical technique that rapidly produces high‐resolution profiles of the shallow subsurface under most field conditions. ERGI uses measurements of the ground's resistance to an electrical current to develop a two‐dimensional model of the shallow subsurface (<200 m) called an ERGI profile. ERGI measurements work equally well in resistive sediments (‘clean’ sand and gravel) and in conductive sediments (silt and clay). This paper tests the effectiveness of ERGI in mapping the lithology and geometry of buried fluvial deposits. ERGI surveys are presented from two channel‐fills and two valley‐fills. ERGI profiles are compared with lithostratigraphic profiles from borehole logs, sediment cores, wireline logs or GPR. Depth, width and lithology of sand and gravel channel‐fills and adjacent sediments can be accurately detected and delineated from the ERGI profiles, even when buried beneath 1–20 m of silt/clay.  相似文献   

19.
Trace elements in the Geological Survey of Japan carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 were determined by inductively coupled plasma-mass spectrometry after digestion with 2% v/v HNO3. A standard addition method was adopted in this determination in order to neutralise the Ca matrix effect. In addition, Sc, Y, In and Bi were used as internal standards to control the matrix effect and correct instrumental drift. Of the eighteen elements measured in JCp-1, precisions for fourteen elements, including Cu, Cd and Ba, were better than 10% RSD and concentrations ranged from 0.002 μg g-1 (Cs) to 8.02 μg g-1 (Ba). The concentrations of measured trace elements in JCt-1, except for Cu, were lower than those in JCp-1. Precisions for all elements with concentrations higher than 0.04 μg g-1 in JCt-1 were also better than 10% RSD and concentrations were found to be between 0.001 μg g-1 (Cs) and 4.84 μg g-1 (Ba). The concentrations of more than fifteen trace elements in the aragonite reference materials are reported here for the first time. Both reference materials are suitable for use in geochemical studies of environmental reconstruction based upon biogenic carbonate materials.  相似文献   

20.
The requirements for the performance of a ground-penetrating radar (GPR) system for detecting subsurface cavities are analyzed by numerical modeling of the GPR problem. The algorithm used to solve the forward GPR problem is approximated to a real experiment with regard to the design of the GPR system, the parameters of the source and receiver, and their position relative to the medium under study and its inhomogeneity. We calculated the spatiotemporal distribution of the field of the detected signal from a pulse source located at the interface between the medium and a cavity anomaly of a given geometry. The results were used to estimate the dynamic range of the GPR system necessary for determining the anomaly. We also performed GPR surveys of low-contrast inhomogeneities (cavities in mines) using GROT 12 GPR systems and analyzed the survey results by numerical modeling. It is shown that the GPR performance required to detect and locate inhomogeneities of interest at a certain sounding depth can be estimated in the experiment design phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号