首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Menderes Massif, exposed in western Anatolia, is a metamorphic complex cropping out in the Alpine orogenic belt. The metamorphic rock succession of the Massif is made up of a Precambrian basement and overlying Paleozoic-early Tertiary cover series. The Pan-African basement is composed of late Proterozoic metasedimentary rocks consisting of partially migmatized paragneisses and conformably overlying medium- to high-grade mica schists, intruded by orthogneisses and metagabbros. Along the southern flank of the southern submassif, we recognized well-preserved primary contact relationship between biotite and leucocratic tourmaline orthogneisses and country rocks as the orthogneisses represent numerous large plutons, stocks and vein rocks intruded into a basement of garnet mica schists. Based on the radiometric data, the primary deposition age of the precursors of the country rocks, garnet mica schist, can be constrained between 600 and 550?Ma (latest Neoproterozoic). The North Africa–Arabian-Nubian Shield in the Mozambique Belt can be suggested as the possible provenance of these metaclastics. The intrusion ages of the leucocratic tourmaline orthogneisses and biotite orthogneisses were dated at 550–540?Ma (latest Neoproterozoic–earliest Cambrian) by zircon U/Pb and Pb/Pb geochronology. These granitoids represent the products of the widespread Pan-African acidic magmatic activity, which can be attributed to the closure of the Mozambique Ocean during the final collision of East and West Gondwana. Detrital zircon ages at about 550?Ma in the Paleozoic muscovite-quartz schists show that these Pan-African granitoids in the basement form the source rocks of the cover series of the Menderes Massif.  相似文献   

2.
Field, geochemical, and geochronologic data of high-grade basement metamafic and evolved rocks are used to identify the nature and timing of pre-Alpine crustal growth of the Rhodope Massif. These rocks occur intrusive into clastic-carbonate metasedimentary succession. Petrography and mineral chemistry show compositions consistent with Alpine amphibolite-facies metamorphism that obliterated the original igneous textures of the protoliths. Bulk-rock geochemistry identifies low-Ti tholeiitic to calc-alkaline gabbroic-basaltic and plagiogranite precursors, with MORB-IAT supra-subduction zone signature and trace elements comparable to modern back-arc basalts. The U-Pb zircon dating revealed a mean age of 455 Ma for the magmatic crystallization of the protoliths that contain inherited Cambrian (528–534 Ma) zircons. Carboniferous, Jurassic, and Eocene metamorphic events overprinted the Ordovician protoliths. The radiometric results of the metamorphic rocks demonstrate that Ordovician oceanic crust was involved in the build-up of the Rhodope high-grade basement. Dating of Eocene-Oligocene volcanic rocks overlying or cross-cutting the metamorphic rocks supplied Neoproterozoic, Ordovician and Permo-Carboniferous xenocrystic zircons that were sampled en route to the surface from the basement. The volcanic rocks thus confirm sub-regionally present Neoproterozoic and Paleozoic igneous and metamorphic basement. We interpret the origin of the Middle-Late Ordovician oceanic magmatism in a back-arc rift-spreading center propagating along peri-Gondwanan Cadomian basement terrane related to the Rheic Ocean widening. The results highlight the presence of elements of Cadomian northern Gondwana margin in the high-grade basement and record of Rheic Ocean evolution. The eastern Rhodope Massif high-grade basement compared to adjacent terranes with Neoproterozoic and Cambro-Ordovician evolution shares analogous tectono-magmatic record providing a linkage among basement terranes incorporated in the Alpine belt of the north Aegean region.  相似文献   

3.
The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss) from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar) suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma) and Paleoproterozoic(ca.2200-1700 Ma) zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma) and early Neoproterozoic(ca.900-750 Ma) detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with~680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision.  相似文献   

4.
ABSTRACT

Different tectonic interpretations have been proposed for the various spatially associated Palaeoproterozoic granulite-facies lithologies (metasedimentary rocks, metabasites, and felsic granulites) from north-central part of the North China Craton, which hinges primarily on controversies about metamorphic histories of these granulites, especially on the timing of peak metamorphism. Published data exhibit two controversial peak metamorphic ages of 1950–1900 Ma and 1850–1800 Ma. We report here LA-ICPMS U–Pb zircon ages of seven representative granulite-facies samples of different lithologies to constrain the timing of metamorphism, and then discuss their geological significance. Most zircon grains from these rocks display weak core-and-rim structures and yield two comparable group metamorphic ages of 1970–1900 Ma and 1880–1790 Ma, although their formation ages vary from Neoarchaean to Palaeoproterozoic. The older population metamorphic ages are interpreted to approximate timing of high-pressure granulite-facies metamorphism, and the younger population ages as the approximate timing of intermediate- to low-pressure granulite-facies metamorphism. Combined with recent petrological studies, we propose these granulites have shared metamorphic histories at least since ~1970–1900 Ma, and they are probably formed in one single metamorphic cycle in response to crustal-scale subduction–collision–exhumation processes involved in Palaeoproterozoic mobile belt.  相似文献   

5.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

6.
We report new petrological data and geochronological measurements of granulites from Vesleknausen in the highest-grade section of the Lützow-Holm Complex, part of the Gondwana-assembling collisional orogen in East Antarctica. The locality is dominated by felsic to intermediate orthogneiss (charnockite and minor biotite gneiss), mafic orthogneiss, and hornblende-pyroxene granulite, with deformed and undeformed dykes of metagranite and felsic pegmatite. Pseudosection analysis of charnockite in the system NCKFMASHTO, supported by geothermometry of mafic orthogneiss, was used to infer peak metamorphic temperatures of 750e850 ?C, approximately 150 ?C lower than those estimated for met-asedimentary gneisses from Rundv?gshetta, 6 km to the northeast. SHRIMP U-Pb analysis of zircons from feldspar-pyroxene gneiss, which corresponds to a partially molten patch around mafic orthogneiss, yielded a Concordia upper intercept ages of 2507.9 ? 7.4 Ma, corresponding to the time of formation of the magmatic protolith to the orthogneiss. Partial melting during peak metamorphism probably took place between 591 and 548 Ma, as recorded in rims overgrew around magmatic zircon. Our results suggest that Rundv?gshetta-Vesleknausen-Strandnibba region in southwestern Lützow-Holm Bay, where orthogneisses are dominant, consists of a single crustal block, possibly formed by ca. 2.5 Ga arc mag-matism. The Neoarchean magmatic terrane was tectonically mingled with other fragments (such as metasedimentary units in northern Lützow-Holm Bay) by subduction/collision events during the as-sembly of Gondwana supercontinent, and subsequently underwent w850 ?C granulite-facies meta-morphosed during Neoproterozoic to Cambrian final collisional event.  相似文献   

7.
秦岭岩群被认为是出露于北秦岭地体内最古老的前寒武纪基底岩石,记录了北秦岭造山带的地壳形成和演化历史。本文报道丹凤-西峡地区五件秦岭岩群片麻岩锆石U-Pb年龄结果,限定其形成和变质时代,探讨北秦岭地体的构造归属。定年结果表明,岩浆成因锆石颗粒的年龄集中在1400~1600Ma左右和850~950Ma左右,记录两期主要岩浆活动。6粒锆石具有变质成因特征,低Th/U比值(0.03),206Pb/238U年龄变化在510~465Ma之间,加权平均值477±18Ma。这一古生代变质叠加时代与北秦岭地体南北缘高压变质作用时代基本一致,说明秦岭岩群遭受到北秦岭造山带俯冲-碰撞造山过程的变质作用。秦岭岩群主要形成于中元古代晚期至新元古代早期,基底岩石缺乏早元古代和太古代岩浆活动的记录。在岩浆作用时代上,北秦岭地体与广泛发育新元古代中-晚期岩浆作用的扬子陆块北缘有差别,也不同于晚太古代-早元古代的华北陆块南缘,可能是中-新元古代形成的独立微陆块。  相似文献   

8.
中国西部的柴达木陆块和欧龙布鲁克陆块的基底岩系虽然在地球化学上与扬子陆块具有亲缘性,但它们之间的组成和变质作用历史却显著不同。欧龙布鲁克陆块下部基底德令哈杂岩和达肯大坂岩群于~1.95Ga发生了角闪岩相-麻粒岩相区域变质作用并克拉通化,响应了全球Columbia超大陆汇聚事件;随后又与中元古代万洞沟岩群一道于~1.0Ga发生绿片岩相变质作用,共同响应了全球Rodinia超大陆汇聚事件;新元古代中晚期裂解后于中奥陶纪受原特提斯洋关闭影响而隆起。柴达木陆块基底主体由中元古代金水口岩群白沙河岩组(柴南缘)和沙柳河岩群乌龙滩岩组(柴北缘)组成,以S-型花岗岩的侵入活动和相应的变质作用响应了全球Rodinia超大陆汇聚事件。晚泛非期(520~480Ma)柴达木陆块与冈瓦纳主大陆俯冲碰撞,发生中压角闪岩相-麻粒岩相和高压超高压变质作用,经短暂拼贴后很快进入到原特提斯洋域,随460~420Ma的大洋关闭而发生变质叠加。区域对比表明,在基底组成和地壳演化史上,欧龙布鲁克陆块与阿拉善陆块和塔里木陆块(包括扬子陆块)相似,柴达木陆块则与北秦岭陆块以及祁连陆块相似,因而分属两个陆块群。塔—欧陆块群记录的~500Ma热事件与塔—欧和柴—秦陆块群共同记录的~450Ma热事件是两个性质不同的构造热事件。  相似文献   

9.
Garnet granulite and pyroxenite xenoliths from the Grib kimberlite pipe (Arkhangelsk, NW Russia) represent the lower crust beneath Russian platform in close vicinity to the cratonic region of the north-eastern Baltic (Fennoscandian) Shield. Many of the xenoliths have experienced strong interaction with the kimberlite host, but in others some primary granulite-facies minerals are preserved. Calculated bulk compositions for the granulites suggest that their protoliths were basic to intermediate igneous rocks; pyroxenites were ultrabasic to basic cumulates. A few samples are probably metasedimentary in origin. Zircons are abundant in the xenoliths; they exhibit complex zoning in cathodoluminescence with relic cores and various metamorphic rims. Cores include oscillatory zircon crystallized in magmatic protoliths, and metamorphic and magmatic sector-zoned zircons. Recrystallization of older zircons led to the formation of bright homogeneous rims. In some samples, homogeneous shells are surrounded by darker convoluted overgrowths that were formed by subsolidus growth when a change in mineral association occurred. The source of Zr was a phase consumed during a reaction, which produced garnet. Late-generation zircons in all xenoliths show concordant U–Pb ages of 1.81–1.84 Ga (1,826 ± 11 Ma), interpreted as the age of last granulite-facies metamorphism. This event completely resets most zircon cores. An earlier metamorphic event at 1.96–1.94 Ga is recorded by some rare cores, and a few magmatic oscillatory zircons have retained a Neoarchaean age of 2,719 ± 14 Ma. The assemblage of metaigneous and metasedimentary rocks was probably formed before the event at 1.96 Ga. Inherited magmatic zircons indicate the existence of continental crust by the time of intrusion of magmatic protoliths in the Late Archaean. The U–Pb zircon ages correspond to major events recorded in upper crustal rocks of the region: collisional metamorphism and magmatism 2.7 Ga ago and reworking of Archaean rocks at around 1.95–1.75 Ga. However, formation of the granulitic paragenesis in lower crustal rocks occurred significantly later than the last granulite-facies event seen in the upper crust and correlates instead with retrograde metamorphism and small-volume magmatism in the upper crust.  相似文献   

10.
通过对佳木斯地块南缘穆棱地区常兴村-新兴村剖面的研究,指出这里是“麻山群”和“黑龙江群”的结合部位,具有古大陆边缘性质。穆棱地区的“麻山群”为佳木斯地块南缘的陆壳基底,其南侧的“黑龙江群”为包括洋壳残片在内的增生-碰撞杂岩。对“麻山群”混合岩的SHRIMP锆石U-Pb定年结果表明:佳木斯地块存在中-新元古代的结晶基底,并遭受到~500Ma变质作用的影响。侵入“麻山群”杂岩的花岗岩的岩石学、地球化学研究表明,这些花岗岩具有S型花岗岩的特征;其SHRIMP锆石U-Pb分析表明其形成年龄为486Ma±3Ma,略晚于前人确定的“麻山群”杂岩约500Ma的麻粒岩相变质作用,为同碰撞或碰撞后花岗岩。这些资料进一步证明,该地区可能经历了晚泛非-早加里东期的碰撞造山作用。  相似文献   

11.
阿拉善变质基底古元古代晚期的构造热事件   总被引:18,自引:7,他引:11  
阿拉善地块可分为太古宙的叠布斯格杂岩(岩群)、古元古代的巴彦乌拉山杂岩(岩组)和古-中元古代的阿拉善杂岩(岩群)、波罗斯坦庙片麻杂岩和毕级格台片麻杂岩。太古宙的叠布斯格岩群和片麻岩中的锆石记录了1926Ma和1802Ma的变质事件年龄,角闪石记录了1918Ma的变质事件年龄,斜长石记录了1722Ma的冷却年龄。同时,在波罗斯坦庙变形的片麻状杂岩中的锆石记录了1839Ma的岩浆事件年龄。该区古元古代晚期的构造热事件,可初步将划分为2000~1900Ma的早期事件和1850~1800Ma的晚期事件,并在时间和特点上与大青山-集宁-大同一带变质地体中广泛发育古元古代晚期的岩浆-变质事件非常相似,进而表明,华北克拉通西部陆块中的古元古代晚期造山带(孔兹岩带)向西可延伸到阿拉善东部地区。  相似文献   

12.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   

13.
刘通  翟庆国  王军  苏犁  康珍  索朗次列 《地质通报》2013,32(11):1691-1703
俄久卖高级变质岩位于藏北羌塘盆地中央隆起带北缘的玛依岗日地区,是目前羌塘盆地基底高级变质岩石的唯一代表。该高级变质岩由正片麻岩和副片麻岩组成,本文以正片麻岩为研究重点。正片麻岩锆石CL图像显示出明显的核—幔—边结构。根据LA-ICP-MS锆石U-Pb测年结果,锆石核部年龄范围为242~2490Ma,记录了岩浆岩源岩的年代信息;锆石幔部具有典型的岩浆振荡环带结构,年龄为207Ma±2Ma,相应的Th/U值介于0.02~0.30之间,代表正片麻岩原岩的岩浆结晶时代,该年龄与羌塘中部地区晚三叠世高压变质作用和岛弧岩浆作用在时空上相对应。锆石增生边的年龄为161~197Ma,对应的Th/U值介于0.02~0.15之间,代表片麻岩发生主变质作用的时代,可能是班公湖-怒江洋盆向北的俯冲消减作用在羌塘中部地区的响应。地球化学资料显示,正片麻岩具有类似岛弧型火山岩的地球化学特征。综合区域地质资料,俄久卖高级变质岩原岩的形成与区域上广泛存在的晚三叠世构造、岩浆及角度不整合事件相对应,可能指示羌塘盆地统一基底的形成时代为晚三叠世。这对深入认识羌塘盆地基底的时代、性质及含油气盆地资源远景评价等具有重要意义。  相似文献   

14.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

15.
Determining an age framework for Precambrian crystalline rocks and associated granulite-facies metamorphism of the inner blocks in the North China Craton (NCC) is important for determining the tectonic setting and evolution of the craton during the Neoarchaean–Palaeoproterozoic. The Eastern Hebei terrane (EHT), located in the Eastern Block of the NCC, is composed of tonalitic-trondhjemitic-granodioritic (TTG) gneisses and potassium-rich granitoids, along with rafts of supracrustal rocks that are intruded by basic dikes. TTG gneisses in the EHT yield crystallization ages of 2516–2527 Ma. The oldest age of inherited zircons from a mylonitic TTG gneiss is ~2918 Ma. Granulite-facies supracrustal metamorphic rocks in the Zunhua high-grade meta-greenstone belt indicate an andesitic/basaltic protolith that was formed at ~2498 Ma. A syn-deformational granite in the Jinchangyu greenschist-facies shear zone yields a crystallization age of ~2474 Ma. Metamorphism of the supracrustal rocks and mylonitic greenschist took place at ~2461 and ~2475 Ma, respectively. Rare earth elements (REE) patterns and slightly negative Nb and Ta anomalies indicate that the magmatic precursors of the supracrustal rocks might be derived from partial melting of a sub-arc mantle wedge and metasomatized by fluids derived from a subducting slab. These rocks plot in the island arc basalts (IAB) field on a La/Nb vs. La diagram, further supporting this interpretation. The microstructures of a garnet–two-pyroxene granulite indicate an approximately clockwise P-T path. The crystallization ages of the TTG gneisses represent periods of the major crustal growth in the NCC, and the granulite- and greenschist-facies metamorphism indicates an orogenic event that involved crustal thickening at ~2.47 Ga.  相似文献   

16.
A combined geochemical (whole-rock elements and Sr-Nd-Pb isotopes, zircon trace elements and Hf isotopes) and geochronological (zircon U–Pb ages) study was carried out on the relatively low-grade meta-basites and meta-granitoids from Longjingguan within the central Dabie ultrahigh-pressure (UHP) metamorphic zone, east-central China. Zircon investigations indicate that the meta-basites were formed at ∼772 Ma and subsequently experienced granulite-facies metamorphism at ∼768 Ma and a later thermal overprint at ∼746 Ma, while the meta-granitoids recorded three groups of zircon ages at ca. 819 Ma, 784 Ma and 746 Ma. The meta-granitoids can be subdivided into low-Si and high-Si types, and they were derived from mid-Neoproterozoic partial melting of the Neoarchean and Paleoproterozoic metamorphic basement rocks of the South China Block, respectively. These Neoproterozoic zircon ages are consistent with the protolith ages of the Dabie Triassic UHP meta-igneous rocks. In addition, the low-grade rocks have bulk-rock Pb isotope compositions overlapping with the UHP meta-igneous rocks. Therefore, the low-grade meta-basites and meta-granitoids could be interpreted as counterparts of the UHP meta-igneous rocks in this area, suggesting the same petrogenesis for their protoliths in the Neoproterozoic.Trace element patterns indicate that the low-grade rocks have better preserved their protolith compositions than their equivalent UHP rocks, and thus they are more suitable for elucidating the Neoproterozoic evolution of the northern margin of the South China Block. Zircon ages combined with geochemical features strongly suggest that the protoliths of the meta-granitoids and meta-basites were formed in a magmatic arc and a continental rifting setting, respectively. More specifically, the granitoids derived from partial melting of Neoarchean and Paleoproterozoic basement materials at ∼819 Ma in a magmatic arc setting, whereas the precursors of the meta-basites are products of a continental rifting event at about 784 to 772 Ma. The obtained results provide new geochronological and geochemical constraints for the Neoproterozoic evolution of the northern margin of the South China Block, which can further contribute to the understanding of the breakup of the supercontinent Rodinia.  相似文献   

17.
青藏高原南部拉萨地块中分布的中高级变质岩一直被认为是前寒武纪变质基底,但并未获得可靠的年代学证据,对其岩石成因及构造属性也缺乏系统的研究工作,严重制约了对拉萨地块早期构造演化的进一步研究.本文以拉萨地块北部永珠地区念青唐古拉岩群中的正变质岩系及深熔作用成因的长英质脉体为研究对象,进行了系统的岩石学、地球化学及同位素年代学研究.地球化学研究结果表明,永珠地区念青唐古拉岩群中正变质岩系的原岩为一套E-MORB型蛇绿岩、剪切型大洋斜长花岗岩和岛弧岩浆岩组合,深熔脉体则具有典型埃达克岩的特征,暗示高压条件下镁铁质岩石部分熔融的成因;LA-ICP-MS定年结果进一步表明,洋壳的形成时代为758Ma,与Rodinia超大陆裂解时期相一致,可能是在这一期全球性裂解事件中新生的新元古代洋盆记录;在洋壳的运移和进一步的演化过程中形成了730Ma的剪切型大洋斜长花岗岩和742Ma的岛弧岩浆岩;变质锆石定年结果表明大洋可能最终在666Ma的碰撞造山作用中闭合,并在造山带垮塌初期或高压变质岩系折返过程中,由于减压熔融,形成一期660Ma深熔脉体.本文的研究证明了拉萨地块前寒武纪变质基底的存在,首次获得了精确的新元古代变质及深熔作用年龄,填补了拉萨地块早期构造演化的空白,为进一步探讨拉萨地块起源,恢复其在超大陆的汇聚及裂解事件中古地理位置提供了重要的资料.  相似文献   

18.
Pan-African basement rocks and a Paleozoic cover series, which were intruded by the protoliths of leucocratic orthogneisses, have been recognized in the Menderes Massif, located in the western part of the Alpine orogenic belt of Turkey. This geochemical and geochronological study focuses on the evolution of the Menderes Massif at the end of Paleozoic time. Geochemical data suggest that the crustally derived leucocratic orthogneisses have chemical composition typical of calc-alkaline and S-type granite. Zircon grains which are euhedral with typical igneous morphologies were dated by the 207Pb/206Pb evaporation method. Single-zircon dating of three samples yielded mean 207Pb/206Pb ages of 246LJ, 241LJ and 235Lj Ma. These ages are interpreted as the time of protolith emplacement in Triassic. Geological and geochronological data suggest that leucocratic granites were emplaced in a period following a metamorphic event related to the closure of the Paleo-Tethys. The leucocratic granites were metamorphosed during the Alpine orogenesis and transformed into orthogneisses. The similar Triassic magmatic event at 233DŽ Ma was also occurred, using single-zircon evaporation method, from granitic gneisses which rest upon the migmatites with tectonic contacts in Naxos, Cycladic complex. This indicates that the Menderes Massif and Cycladic complex had a common pre-Early Triassic magmatic evolution.  相似文献   

19.
Recent field campaign in the southern Menderes Massif in southwestern Turkey revealed that the so-called ‘core of the massif’ comprises two distinct types of granitoid rocks: an orthogneiss (traditionally known as augen gneisses) and leucocratic metagranite, where the latter is intrusive into the former and the structurally overlying ‘cover’ schists. These differ from one another in intensity of deformation, degree of metamorphism and kinematics. The orthogneiss display penetrative top-to-the-N–NNE fabrics formed under upper-amphibolite facies conditions during the Eocene main Menderes metamorphism (MMM), whereas foliation and stretching lineation exists in the leucocratic metagranites but are not strongly developed. The leucocratic metagranites show evidence of syn- to post-emplacement deformation in a series of weakly developed top-to-the-S–SSW fabrics formed under lower greenschist-facies (?) conditions. Leucocratic metagranite bodies occur all along the augen gneiss–schist contact in the southern Menderes Massif; they are emplaced as sheet-like bodies into country rocks (previously deformed and metamorphosed during a top-to-the-N–NNE Alpine orogeny) along a ductile extensional shear zone, located between orthogneisses and metasediments, which was possibly active during emplacement. The data presently available indicate that emplacement and associated ductile extensional deformation occurred during Late Oligocene–Early Miocene time. These results confirm previous contentions that there are Tertiary granites in this part of the Menderes Massif.  相似文献   

20.
For the first time, an albite orthogneiss has been recognised and dated within the HP–LT blueschist facies metabasites and metapelites of the Ile de Groix. It is characterised by a peraluminous composition, high LILE, Th and U contents, MORB-like HREE abundances and moderate Nb and Y values. A U–Pb age of 480.8?±?4.8?Ma was obtained by LA-ICP-MS dating of zircon and titanite. It is interpreted as the age of the magmatic emplacement during the Early Ordovician. Morphologically different zircon grains yield late Neoproterozoic ages of 546.6–647.4?Ma. Zircon and titanite U–Pb ages indicate that the felsic magmatism from the Ile de Groix is contemporaneous with the acid, pre-orogenic magmatism widely recognised in the internal zones of the Variscan belt, related to the Cambro-Ordovician continental rifting. The magmatic protolith probably inherited a specific chemical composition from a combination of orogenic, back-arc and anorogenic signatures because of partial melting of the Cadomian basement during magma emplacement. Besides, the late Devonian U–Pb age of 366?±?33?Ma obtained for titanite from a blueschist facies metapelite corresponds to the age of the HP–LT peak metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号