首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A phytoplankton bloom was monitored in coastal waters of Bay of Bengal and its influence in water column properties was investigated. Significant draw down of CO2 was noted within the vicinity of the bloom associated with high chlorophyll biomass. Microscopic analysis revealed diatoms as the dominant population. Skeletonema costatum a diatom, reached cell density of 36,898 cells l?1 within the bloom. The lowest surface pCO2 observed was 287 µatm at the southern end of the transect covarying with surface chlorophyll of 1.090 µg l?1. At the northern end the surface pCO2 went as low as 313 µatm. The pCO2 levels below the mixed layer increased twice of that of surface value (~600 µatm). The chlorophyll values observed by Ocean Colour Monitor-2 were modestly related with the in situ measurements. The primary productivity derived from growth rate, assimilation number and maximum surface chlorophyll was 160.6 mg C m?2 day?1 leading to a modest sequestration ~of 0.08 Gg of carbon per day by the surface waters. Our observations reflects the potential role of diatom blooms on coastal carbon dynamics therefore should be carefully monitored in realm of anthropogenic changes.  相似文献   

2.
Quantitative assessment of chlorophyll-a concentration and its variability is an important input for the oceanic primary productivity modeling and also a key parameter in the global carbon cycle studies. This present work is focused to understand the spatial and temporal variability of phytoplankton in the Bay of Bengal (BOB) during winter monsoon season of October 1999 to March 2000 using Ocean Colour Monitor (OCM) sensor onboard OCEANSAT-1 satellite. Daily chlorophyll-a images from OCM sensor were used in the study. Efforts were also put to study the correlation between chlorophyll-a concentrations; NOAA-AVHRR derived Sea Surface Temperature (SST) and QuickSCAT scatterometer derived wind stress data. Analysis of the chlorophyll-a images shows the presence of extensive phytoplankton blooms during mid December 1999 to early January 2000 in the western part of BOB. The bloom dominated regions also exhibit reduced SST (∼24–27°C) and enhanced wind stress indicating upwelling processes leading nutrient entrainment in the upper column of the sea surface. Apart from this, higher phytoplankton biomass associated with the fresh water reverine plumes has also been observed. During October 1999 a super cyclone was active in the BOB, as increase in the productivity was observed in the early November 1999 images of OCM data due to the cyclone induced churning of the water column.  相似文献   

3.
Aerosol and water vapour are very important element in the Earth’s climate system which has direct role in the Earth’s radiation budget. In this paper the seasonality, latitudinal distribution and the relationship of aerosol optical thickness (AOD) and water vapour (WV) using MODIS Level 3 monthly data from 2001 to 2008 are analysed. The analysis shows that AOD (0.55 μm) values reach maximum during southwest monsoon and remain minimum during northeast monsoon period. The Equatorial Indian Ocean shows minimum AOD (0.115 to 0.153) throughout the year compared to Arabian Sea (0.208 to 0.613) and Bay of Bengal (0.214 to 0.351). Arabian Sea shows high variation and maximum value of AOD compared to Bay of Bengal and Equatorial Indian Ocean. During southwest monsoon WV over Bay of Bengal was found higher in concentration compared to Arabian Sea and Equitorial Indian Ocean throughout the study period. Comparison between Arabian Sea (2.98 cm to 5.07 cm) and Bay of Bengal (3.49 cm to 5.94 cm) shows that WV concentration is less in Arabian Sea throughout the year. The analysis of correlation between WV and AOD was found to be inconsistent. However, AOD and WV shows a strong positive correlation for whole year (Mean R2 =0.90) in the Equitorial Indian Ocean region except in the months of January, February and March. In general, the correlation between WV and AOD is found to be strongly positive for oceanic aerosol (sea salt) in low water vapour condition.  相似文献   

4.
The complex composition and distribution of colour producing agents (CPAs) in turbid aquatic environments such as the Western Basin of Lake Erie (WBLE) presents a challenge to the application of remote sensing data for differentiating among in-water constituents and estimating their concentrations independently. In this study, multivariate procedures are applied to lab-based spectrophotometer data to estimate the concentration of chlorophyll-a and suspended matters in the WBLE. Principal Component Analysis of first-derivative transformed hyper-spectral data from the spectrophotometer extracted three significant spectral components for each cruise, explaining up to 88% of the spectral variability. Spectral matching using reference spectra indicated that two of the extracted patterns represent signatures of in-water constituents that govern the optical properties of the WBLE, namely, cyanobacteria and diatoms associated with green algae. The spectrophotometer data clearly revealed known spectral features associated with phytoplankton, such as the absorption minima near 550 and 700 nm, which can be attributed to the minimum of absorption and fluorescence of chlorophyll-a, respectively. The method also extracted the absorption peaks due to chlorophyll-a, near 670 nm, and due to phycocyanin, near 620 nm. Principal component regression of chlorophyll-a on the PC scores indicated that 63.4% of variation of chlorophyll-a in the WBLE can be explained by two components. Factors 2 and 3 explain 60% of the joint spatiotemporal variability of suspended matters in the WBLE. The results illustrate the potential of multivariate technique applied to remote sensing data in isolating the patterns that represent constituents in turbid Case 2 waters.  相似文献   

5.
Algal blooms and the resulting deterioration of water quality have threatened the environmental health of inland lakes. This study investigated the spatiotemporal dynamics of gypsum blooms in the Salton Sea, the largest inland water body in California. An innovative gypsum bloom index (GI) was proposed to detect gypsum blooms based on Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data for three bands (469, 555, and 859 nm) during 2000–2018. Discoloration (from green to reddish brown) was observed in the gypsum bloom-infested waters mapped using the hue, saturation, and value (HSV) color model. We found that: (1) the GI is able to effectively map gypsum blooms in the Salton Sea with a relatively high accuracy (85 %); (2) the largest gypsum bloom area was observed in summer (August and September), with notable gypsum blooms lasting more than 40 days in 2003, 2005, 2006, 2016, and 2018; (3) the gypsum bloom-infested waters shifted from the center to the southeastern shore of the lake during 2003–2018, and the frequency of gypsum blooms significantly increased since 2008. Meanwhile, the temporal and spatial differences between the northwestern and southeastern lake increased over the observation period; and (4) discoloration occurred in the gypsum bloom-infested waters and lasted for 14 days on average, longer periods of discoloration (more than 20 days) occurred d in 2002, 2016, and 2018. The reconstruction of gypsum bloom dynamics in the Salton Sea provides valuable information for the practical management and restoration of the Salton Sea.  相似文献   

6.
Parameters were retrieved from the hyperspectral radiometer like upwelling and downwelling radiance (Lu and Ed) upwelling and downwelling attenuation (K-Lu and K-Ed) for 9 stations in the northeast Arabian Sea between 16–26 April 2006. Data was analyzed for 5 offshore and 4 coastal stations of the cruise SS-244, on board FORV “Sagar Sampada” between latitude 9-22oN and longitude 68–74°E. The peak for all parameters was observed to be different respectively for depths 1, 5, 10, 20, 30, 40, 50 meters in coastal and offshore stations. Each peak in the respective wavelength is due to a particular composition; phytoplankton pigments have spectral peaks at 443, 490, 555, 670 nm, suspended matter, sediments have peaks at 630 and 670 nm. Detailed analysis with High Performance Liquid Chromatography (HPLC) data and comparison with the water composition of our hyperspectral radiometer results show that the marine cyanophyte, Trichodesmium bloom produces high pigment concentrations of chlorophyll-a, zeaxanthin, β-carotene and pheophytin and their absorptions are interpreted at wavelengths 443, 490, 515 and 536 nanometers, respectively. A dip around 515 nm was seen in the Ed and Lu profiles in our study.  相似文献   

7.
In this study chlorophyll measurements were made during March 2012 in the estuarine waters of Off Kakinada and Yanam coast, Bay of Bengal onboard a coastal vessel. In-situ water samples and optical data was collected at 21 stations (surface to 150 m depth) using Underwater radiometer (Hyperpro-II). In-vivo chlorophyll profiles were collected using wet labs fluorometer integrated with underwater Hyperspectral radiometer. Chlorophyll-a concentrations were estimated using HPLC by collecting the water samples at each sampling location. And also chlorophyll-a concentrations were retrieved from the OCM-2 data of OCEANSAT-2 satellite, processed using SeaDAS v.6.2 with the available global ocean colour algorithms namely, OC2 and OC4V4. A total of 33 samples used covering all the stations for chlorophyll-a estimation, and surface water samples of all the stations only being used for direct comparison among chlorophyll concentrations of HPLC, in-situ (fluorometrically integrated to Hyperpro-II) and retrieved from OCM-2. A good correlation found between the Fluorometer derived and HPLC measured chlorophyll-a concentration with an R2 value of 0.78. The relation between Chlorophyll-a concentration measured from HPLC and retrieved from OCM-2 (OC2 and OC4V4 algorithms) using SeaDASv.6.2 for 10 samples has been compared for validation and obtained an R2 value of 0.6. Also comparisons done with the in-situ measured (fluorometer) Chlorophyll-a concentration with OCM-2 chlorophyll data (OC4-V4 and OC2 algorithms) and validation with 10 concurrent in-situ surface measurements showed a significant overestimation by OCM-2 at low chlorophyll-a concentrations and underestimation at high chlorophyll-a concentrations.  相似文献   

8.
An empirical model is developed and used with remotely sensed predictors: sea surface temperature (SST) and chlorophyll-a concentration (Chl-a), to compute surface water partial pressure of carbon dioxide (pCO2w) and air-sea fluxes of CO2 in the Hooghly estuary and its adjacent coastal oceans. In situ observations used here were based on measurements carried out in this region during winter and summer periods in 2008. The estimated pCO2w compares well with the in situ observations at root mean square error ±18 μatm. In winter, estimated pCO2w ranges between 320 and 500 μatm with large values (>400 μatm) on the south-western and south-eastern flanks of the coastal domain and lower values (340–375 μatm) on the main-channel. In summer, it remained spatially uniform at 450 μatm. Extrapolation of the results over the study region based on the Moderate Imaging Specroradiometer (MODIS) measured SST and Chl-a suggests that the region is a strong source of atmospheric CO2 during the summer with net release of 0.095 Tg C year?1 (equivalent to mean flux of 90 molC m?2 year?1) and is a weak source during the winter with net release of 0.006 Tg C yr?1 (0.5 molC m?2 year?1) from the geographical extent of 6000 Km2 area.  相似文献   

9.
Tropical cyclones when on land create havoc, but over the oceans they can trigger a very strong biological response, giving rise to phytoplankton blooms. The Super Cyclone (TC) 05B that occurred during October 25–29, 1999, in the Bay of Bengal over the tropical Indian ocean was one of the most significant tropical cyclones on record to affect India, with maximum winds of 240 km/h, and the worst since 1971. Using satellite data, it is found that this tropical super cyclone helped spawn a notable mesoscale phytoplankton bloom in the domain (17 $^{circ}$–20$^{circ} hbox{N}$; 87$^{circ}$–90 $^{circ} hbox{E}$), which persisted for over a month. The bloom spanned 440 km zonally and 330 km meridonally, enhanced the chlorophyll-$a$ concentrations to a maximum of 10 $hbox{mg/m}^{3}$ and the net primary productivity by 200%. Furthermore, a cyclonic eddy over the bloom region is revealed from an ocean general circulation model simulation, helping the bloom to last for over month.   相似文献   

10.
This study aims at discriminating eight mangrove species of Rhizophoraceae family of Indian east coast using field and laboratory spectra in spectral range (350–2500 nm). Parametric and non-parametric statistical analyses were applied on spectral data in four spectral modes: (i) reflectance (ii) continuum removed, (iii) additive inverse and (iv) continuum removed additive inverse. We introduced continuum removal of inverse spectra to utilize the advantage of continuum removal in reflectance region. Non-parametric test gave better separability than parametric test. Principal component analysis and stepwise discriminant analysis were applied for feature reduction and to identify optimal wavelengths for species discrimination. To quantify the separability, Jeffries–Matusita distance measure was derived. Green (550 nm), red edge (680–720 nm) and water absorption region (1470 and 1850 nm) were found to be optimal wavelengths for species discrimination. The continuum removal of additive inverse spectra gave better separability than the continuum removed spectra.  相似文献   

11.
Imagery from recently launched high spatial resolution satellite sensors offers new opportunities for crop assessment and monitoring. A 2.8-m multispectral QuickBird image covering an intensively cropped area in south Texas was evaluated for crop identification and area estimation. Three reduced-resolution images with pixel sizes of 11.2 m, 19.6 m, and 30.8 m were also generated from the original image to simulate coarser resolution imagery from other satellite systems. Supervised classification techniques were used to classify the original image and the three aggregated images into five crop classes (grain sorghum, cotton, citrus, sugarcane, and melons) and five non-crop cover types (mixed herbaceous species, mixed brush, water bodies, wet areas, and dry soil/roads). The five non-crop classes in the 10-category classification maps were then merged as one class. The classification maps were filtered to remove the small inclusions of other classes within the dominant class. For accuracy assessment of the classification maps, crop fields were ground verified and field boundaries were digitized from the original image to determine reference field areas for the five crops. Overall accuracy for the unfiltered 2.8-m, 11.2-m, 19.6-m, and 30.8-m classification maps were 71.4, 76.9, 77.1, and 78.0%, respectively, while overall accuracy for the respective filtered classification maps were 83.6, 82.3, 79.8, and 78.5%. Although increase in pixel size improved overall accuracy for the unfiltered classification maps, the filtered 2.8-m classification map provided the best overall accuracy. Percentage area estimates based on the filtered 2.8-m classification map (34.3, 16.4, 2.3, 2.2, 8.0, and 36.8% for grain sorghum, cotton, citrus, sugarcane, melons, and non-crop, respectively) agreed well with estimates from the digitized polygon map (35.0, 17.9, 2.4, 2.1, 8.0, and 34.6% for the respective categories). These results indicate that QuickBird imagery can be a useful data source for identifying crop types and estimating crop areas.  相似文献   

12.
Increasing population and natural disasters like drought, flood, cyclone etc., has impacted global agriculture area and hence continuously modifying cropping pattern and associated statistics. The present study analysed agriculture dynamics over one of the densely populated and disaster prone state (Bihar) in India and derived vital statistics (single, double and triple cropping area, and monthly, seasonal, annual and long term status at the state and district level) for the years 2001–2012. The study used time-series MODIS vegetation index (EVI; MOD13A2, 1 km, 16 day, 2001–2012), MODIS annual Land Cover product (MCD12Q1, 500 m, 2001–2012) and Global Land Cover map (Scasia_V4, 1 km, 2000; Globcover_V2.2, 300 m, 2005/2006 and V2.3, 2009, 300 m), and extracted horizontal (i.e., area change) and vertical (i.e., cropping intensification) agriculture change pattern. The results were inter-compared, and validated using government reports as well as with high spatial resolution data (IRS-LISS III 23.5 m). From 2001–2006 to 2007–2012, the net horizontal and vertical change in agriculture area is +145.24 and +907.82 km2, respectively, and net change in seasonal crop area (winter, summer and monsoon) is +959.21, +1009.84 and ?1061.64 km2, respectively. The districts which are located along the eastern part of Ganges experienced maximum positive changes and the districts along Gandak river in the north-western part of the study area experienced maximum negative changes. Overall, the study has quantified and revealed interesting space–time agriculture change patterns over 12 years including impacts caused by droughts and floods in the study area.  相似文献   

13.
Remote sensing of ocean colour yields information on the constituents of sea water, such as the concentration of phytoplankton pigments, suspended sediments and yellow substances. It is well understood that the study of ocean colour is significantly related with the primary production and zonation of potential fishing sites in coastal and oceanic waters. The major pigment constituent is predominated by chlorophyll-a (ocean colour pigment of phytoplankton). The chlorophyll mapping on regular basis plays a major role in assessing water quality and classifying different water types. IRS P-3 MOS-B satellite data for three consecutive passes of path 94, during the period of January-February 1997 have been used to derive chlorophyll-a concentration. The present study emphasizes on the chlorophyll mapping using IRS-P3 MOS-B data for the coastal and offshore water of Maharashtra coast, India.  相似文献   

14.
Spatial Variability and Precision Nutrient Management in Sugarcane   总被引:1,自引:0,他引:1  
Investigations were carried out to develop precision nutrient management techniques for sugarcane. The study area (800 ha) comprised of Bijapur, Bilgi and Jamakhandi talukas that lie between 16° 34′–28° 10′ N latitudes and 75° 33′–75° 37′ E longitudes and located around Nandi Sahakari Sakkare Karkhane (NSSK) Niyamit, Galagali. The soils are medium to deep black with pH and EC ranging from 7.32 to 8.36 and 0.17 to 1.13 dS/m, respectively. The soils are low to medium in available nitrogen, medium in available phosphorus and high in available potassium content. Crop condition assessment was made through analysis of LISS-III satellite images using Erdas Imagine software. Fertigation with 300 kg N and 195 kg K per ha at fortnightly interval and soil application of 32 kg P per ha as basal, recorded higher sugarcane yield (167 Mg ha?1) as compared to 124 Mg ha?1 obtained with soil application of 250 kg N, 32 kg P and 156 kg K per ha and flood irrigation as per the package recommended by the University(POP). Fertigation of N and K at weekly interval recorded highest NDVI value (0.354) and soil application of nutrients as per POP resulted in the lowest NDVI of 0.219.  相似文献   

15.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

16.
Building on the availability of high revisit frequency Earth Observation satellites at medium spatial resolution (250 m), this study investigates the feasibility of temporal monitoring of water bodies at a continental scale with MODIS. A 2004–2010 time series of twice-daily observations covering the whole African continent was systematically processed using a surface water detection method to derive 10-day indicators describing the location, the intra- and inter-annual variability as well as the temporal characterization of water bodies (i.e. seasonal or permanent water and maximum extent). The multispectral surface reflectance transformation in the HSV color space allows a per-pixel identification of surface water. The water aggregation time indicator provides the water occurrence for each 10-day period built from the seven years of observations. The cartographic products were successfully cross-validated with already existing maps and water products. The validation of the water body maximum extent map estimates the commission error at less than 6% and the seasonality information was also found to be consistent with the Köppen climatic classification.  相似文献   

17.
We investigate global mean sea level (MSL) changes and different geophysical contributions at interannual and long-term (decadal) time-scales. Thermosteric effects of global MSL changes are estimated from ocean temperature anomaly data for the period 1955–2003 from the World Ocean Database 2001 (WOD01), plus additional data processed through June 2004. Estimates based on WOD01 show significant differences to previously published results based on similar temperature anomaly data from the World Ocean Database 1998 (WOD98), especially during the period overlapping with the TOPEX/Poseidon satellite altimeter mission. During this period (1993–2004), the WOD01-estimated thermosteric contribution of global MSL change is less than half of the estimate from WOD98 (1.3 ± 0.1 vs. 3.0 ± 0.6 mm/year), as compared to the rate of 2.6 ± 0.06 mm/year observed by satellite altimeters. The larger uncertainty in ocean temperature profiles and incomplete data collection in WOD98, especially in the later years (1997 and 1998) appear to be the major error sources to the overestimated steric effects by WOD98. During the entire 50-year period, the steric effect on global MSL change amounts to about 0.34–0.39 (±0.05) mm/year. Strong interannual and decadal variability exists in estimated thermosteric contributions to the global MSL change, and (surprisingly) the thermosteric effect does not show any pronounced contribution to the strong interannual variability during the 1997/1998 El Niño/La Niña event. Our analysis based on the National Centers for Environmental Prediction reanalysis atmospheric model and the National Oceanic and Atmospheric Administration Climate Prediction Center global land data assimilation system indicates that atmospheric water vapor and terrestrial water storage changes show strong interannual variability that is well correlated with observed global MSL change, and could have significant effects on interannual global MSL changes.  相似文献   

18.
Accurate estimation of chlorophyll-a concentration in turbid coastal waters by means of remote sensing is challenging due to the optical complexity of these waters. We have developed a four-band quasi-analytical algorithm for assessment of chlorophyll-a concentration in coastal waters. The objectives of this study are to validate the applicability of three-band semi-analytical algorithm, quasi-analytical algorithm, and four-band quasi-analytical algorithm in estimating chlorophyll-a concentration in turbid coastal waters for MODIS sensor. These three algorithms are calibrated and evaluated against coastal evaluation datasets provided by SeaWiFS Bio-optical Archive and Storage System. The algorithm validation results indicate that the four-band quasi-analytical algorithm produces a superior performance to both three-band semi-analytical algorithm and quasi-analytical algorithm. By comparison, using four-band quasi-analytical algorithm produces 21.61 % uncertainty in estimating chlorophyll-a concentration from turbid coastal waters, lower than 77.90 % for three-band semi-analytical algorithm and 74.31 % for quasi-analytical algorithm, respectively. The significantly reduced uncertainty in chlorophyll-a concentration assessment is due to effectively removal of pigment-package effects and particle overlapping effects on the chlorophyll-a absorption estimation using a optical classification method. These findings imply that, provided that an atmospheric correction scheme for visible and near-infrared bands is available, the database of MODIS imagery could be used for quantitative monitoring of chlorophyll-a concentration in turbid coastal waters by four-band quasi-analytical algorithm.  相似文献   

19.
Digital elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) are distributed at a horizontal resolution of 90 m (30 m only for US) for the world, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data provide 30 m horizontal resolution, while CARTOSAT-1 (IRS-P5) gives 2.6 m horizontal resolution for global coverage. SRTM and ASTER data are available freely but 2.6 m CARTOSAT-1 data are costly. Hence, through this study, we found out a horizontal accuracy for selected ground control points (GCPs) from SRTM and ASTER with respect to CARTOSAT-1 DEM to implement this result (observed from horizontal accuracy) for those areas where the 2.6-m horizontal resolution data are not available. In addition to this, the present study helps in providing a benchmark against which the future DEM products (with horizontal resolution less than CARTOSAT-1) with respect to CARTOSAT-1 DEM can be evaluated. The original SRTM image contained voids that were represented digitally as ?140; such voids were initially filled using the measured values of elevation for obtaining accurate DEM. Horizontal accuracy analysis between SRTM- and ASTER-derived DEMs with respect to CARTOSAT-1 (IRS-P5) DEM allowed a qualitative assessment of the horizontal component of the error, and the appropriable statistical measures were used to estimate their horizontal accuracies. The horizontal accuracy for ASTER and SRTM DEM with respect to CARTOSAT-1 were evaluated using the root mean square error (RMSE) and relative root mean square error (R-RMSE). The results from this study revealed that the average RMSE of 20 selected GCPs was 2.17 for SRTM and 2.817 for ASTER, which are also validated using R-RMSE test which proves that SRTM data have good horizontal accuracy than ASTER with respect to CARTOSAT-1 because the average R-RMSE of 20 GCPs was 3.7 × 10?4 and 5.3 × 10?4 for SRTM and ASTER, respectively.  相似文献   

20.
Parkachik Glacier is located in the Suru sub-basin of the Upper Indus River, Zanskar Himalaya. The Glacier has been analysed using Corona KH-4B (1971), Landsat-TM (1999), field survey (2015), Google EarthTM (2015) and ASTER GDEM (2015) for frontal recession and area changes. Overall, from 1971 to 2015, the Glacier has retreated by 127 ± 0.09 m i.e. (0.75 ± 0.07%) at a rate of 2.9 ± 0.004 ma?1 with a simultaneous decrease in area from 49.5 to 48.8 km2 i.e. 740 ± 0.7 m2 (1.5 ± 0.09%) at a rate of 74 ± 0.7 m2a?1. However, during recent decade (1999–2015), the rate of glacier recession of 3.9 ± 0.004 ma?1 with a corresponding area loss of 500 ± 0.74m2 (1 ± 0.1%) was higher than the retreat rate of 2.3 ± 0.001 ma?1 and an area loss of 240 ± 0.02m2 (0.48 ± 0.08%) during 1971–1999. In the field, the evidences of glacier recession are present in the form of separated dead ice blocks from the main Glacier, recessional dumps/moraines, active ice calving activity and a small proglacial pond/lake at the terminus/snout of the Glacier. However, the recession over the studied period has been very slow and is controlled by its topographic configuration, particularly the large altitudinal range (6030–3620 m), almost northerly aspect and steep slope (average ~ 30°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号