首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies.  相似文献   

2.
ABSTRACT

Data on land use and land cover (LULC) are a vital input for policy-relevant research, such as modelling of the human population, socioeconomic activities, transportation, environment, and their interactions. In Europe, CORINE Land Cover has been the only data set covering the entire continent consistently, but with rather limited spatial detail. Other data sets have provided much better detail, but either have covered only a fraction of Europe (e.g. Urban Atlas) or have been thematically restricted (e.g. Copernicus High Resolution Layers). In this study, we processed and combined diverse LULC data to create a harmonised, ready-to-use map covering 41 countries. By doing so, we increased the spatial detail (from 25 to one hectare) and the thematic detail (by seven additional LULC classes) compared to the CORINE Land Cover. Importantly, we decomposed the class ‘Industrial and commercial units’ into ‘Production facilities’, ‘Commercial/service facilities’ and ‘Public facilities’ using machine learning to exploit a large database of points of interest. The overall accuracy of this thematic breakdown was 74%, despite the confusion between the production and commercial land uses, often attributable to noisy training data or mixed land uses. Lessons learnt from this exercise are discussed, and further research direction is proposed.  相似文献   

3.
Abstract

Land use/land cover (LULC) classification with high accuracy is necessary, especially in eco-environment research, urban planning, vegetation condition study and soil management. Over the last decade a number of classification algorithms have been developed for the analysis of remotely sensed data. The most notable algorithms are the object-oriented K-Nearest Neighbour (K-NN), Support Vector Machines (SVMs) and the Decision Trees (DTs) amongst many others. In this study, LULC types of Selangor area were analyzed on the basis of the classification results acquired using the pixel-based and object-based image analysis approaches. SPOT 5 satellite images with four spectral bands from 2003 and 2010 were used to carry out the image classification and ground truth data were collected from Google Earth and field trips. In pixel-based image analysis, a supervised classification was performed using the DT classifier. On the other hand, object-oriented (K-NN) image analysis was evaluated using standard nearest neighbour as classifier. Subsequently SVM object-based classification was performed. Five LULC categories were extracted and the results were compared between them. The overall classification accuracies for 2003 and 2010 showed that the object-oriented (K-NN) (90.5% and 91%) performed better results than the pixel-based DT (68.6% and 68.4%) and object-based SVM (80.6% and 78.15%). In general, the object-oriented (K-NN) performed better than both DTs and SVMs. The obtained LULC classification maps can be used to improve various applications such as change detection, urban design, environmental management and zooning.  相似文献   

4.
ABSTRACT

Spatial variation of Urban Land Surface Temperature (ULST) is a complex function of environmental, climatic, and anthropogenic factors. It thus requires specific techniques to quantify this phenomenon and its influencing factors. In this study, four models, Random Forest (RF), Generalized Additive Model (GAM), Boosted Regression Tree (BRT), and Support Vector Machine (SVM), are calibrated to simulate the ULST based on independent factors, i.e., land use/land cover (LULC), solar radiation, altitude, aspect, distance to major roads, and Normalized Difference Vegetation Index (NDVI). Additionally, the spatial influence and the main interactions among the influential factors of the ULST are explored. Landsat-8 is the main source for data extraction and Tehran metropolitan area in Iran is selected as the study area. Results show that NDVI, LULC, and altitude explained 86% of the ULST °C variation. Unexpectedly, lower LST is observed near the major roads, which was due to the presence of vegetation along the streets and highways in Tehran. The results also revealed that variation in the ULST was influenced by the interaction between altitude – NDVI, altitude – road, and LULC – altitude. This indicates that the individual examination of the underlying factors of the ULST variation might be unilluminating. Performance evaluation of the four models reveals a close performance in which their R2 and Root Mean Square Error (RMSE) fall between 60.6–62.1% and 2.56–2.60 °C, respectively. However, the difference between the models is not statistically significant. This study evaluated the predictive performance of several models for ULST simulation and enhanced our understanding of the spatial influence and interactions among the underlying driving forces of the ULST variations.  相似文献   

5.
This paper discusses the development and implementation of a method that can be used with multi-decadal Landsat data for computing general coastal US land use and land cover (LULC) maps consisting of seven classes. With Mobile Bay, Alabama as the study region, the method that was applied to derive LULC products for nine dates across a 34-year time span. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and Coastal Change and Analysis Program value-added products. Each classification’s overall accuracy was assessed by comparing stratified random locations to available high spatial resolution satellite and aerial imagery, field survey data and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall κ statistics ranging from 0.78 to 0.89. Accurate classifications were computed for all nine dates, yielding effective results regardless of season and Landsat sensor. This classification method provided useful map inputs for computing LULC change products.  相似文献   

6.
Abstract

The purpose of this study was to investigate the use of color infrared‐digital orthophoto quadrangle (CIR‐DOQ) data to generate land use/land cover (LULC) maps and to incorporate them as data layers in geographic information systems (GIS) involving various resource management scenarios. The Danville 7.5‐minute quadrangle located in the southern part of Limestone and Morgan counties, Alabama, was used as the study site. Data for the special CIR‐DOQ were generated by scanning four 9x9 inch CIR aerial photographs at a uniform pixel sample grid of 25 microns resulting in 2 meters ground sample resolution. One‐half of the quadrangle was used to identify training sites for performing a supervised classification of the data and the other half to verify the accuracy of the classification. The CIR‐DOQ data were found to be adequate for using a supervised classification algorithm to differentiate major LULC classes, resulting in a classification accuracy of 93 percent. The superior spatial quality of the data over commençai satellite data affords resource managers an opportunity to more effectively study land cover and surface hydrological properties of an area, soil moisture and surface soil textures, as well as differentiate among vegetation species, using remote sensing techniques. However, caution must be exercised when using multispectral classification techniques to classify mosaicked CIRDOQ data because of the image enhancements used to generate the final product. In its present form, there are some limitations to the use of the data for performing spectral classifications. Hozvever, the high spatial resolution of the data enables even the novice resource planner to effectively use the data in visual interpretations of major LULC classes.  相似文献   

7.
Remote classification of land-use/land-cover (LULC) types in Brazil's Cerrado ecoregion is necessary because knowledge of Cerrado LULC is incomplete, sources of inaccuracy are unknown, and high-resolution data are required for the validation of moderate-resolution LULC maps. The aim of this research is to discriminate between Cerrado and agriculture using high-resolution Landsat 7 ETM+ imagery for the western region of Bahia state in northeastern Brazil. The Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM) algorithms were applied to a ~3000 km2 subset, yielding comparable classification accuracies. The panchromatic band was reserved for validation. User's and producer's accuracies were highest for non-irrigated agriculture (~94%) but lower for Cerrado Lato Sensu (89%). Classification errors likely resulted from spatial and spectral characteristics of particular classes (e.g. riparian forest and burned) and overestimation of other classes (e.g. Eucalyptus and water). Manual misinterpretation of validation data may have also led to lower reported classification accuracies.  相似文献   

8.
9.
Soil is a vital part of the natural environment and is always responding to changes in environmental factors, along with the influences of anthropogenic factors and land use changes. The long-term change in soil properties will result in change in soil health and fertility, and hence the soil productivity. Hence, the main aim of this paper focuses on the analysis of land use/land cover (LULC) change pattern in spatial and temporal perspective and to present its impact on soil properties in the Merawu catchment over the period of 18?years. Post classification change detection was performed to quantify the decadal changes in historical LULC over the periods of 1991, 2001 and 2009. The pixel to pixel comparison method was used to detect the LULC of the area. The key LULC types were selected for investigation of soil properties. Soil samples were analysed in situ to measure the physicochemical soil properties. The results of this study show remarkable changes in LULC in the period of 18?years. The effect of land cover change on soil properties, soil compaction and soil strength was found to be significant at a level of <0.05.  相似文献   

10.
Capturing the scope and trajectory of changes in land use and land cover (LULC) is critical to urban and regional planning, natural resource sustainability and the overall information needs of policy makers. Studies on LULC change are generally conducted within peaceful environments and seldom incorporate areas that are politically volatile. Consequently, the role of civil conflict on LULC change remains elusive. Using a dense time stack of Landsat Thematic Mapper images and a hybrid classification approach, this study analysed LULC changes in Kono District between 1986–1991, 1991–2002 and 2002–2007 with the overarching goal of elucidating deviations from typical changes in LULC caused by Sierra Leone's civil war (1991–2002). Informed by social survey and secondary data, this study engaged the drivers that facilitated LULC changes during war and non-war periods in a series of spatial regression models in exploring the interface between civil conflict and LULC change.  相似文献   

11.
Urbanization processes challenge the growth of orchards in many cities in Iran. In Maragheh, orchards are crucial ecological, economical, and tourist sources. To explore orchards threatened by urban expansion, this study first aims to develop a new model by coupling cellular automata (CA) and artificial neural network with fuzzy set theory (CA–ANN–Fuzzy). While fuzzy set theory captures the uncertainty associated with transition rules, the ANN considers spatial and temporal nonlinearities of the driving forces underlying the urban growth processes. Second, the CA–ANN–Fuzzy model is compared with two existing approaches, namely a basic CA and a CA coupled with an ANN (CA–ANN). Third, we quantify the amount of orchard loss during the last three decades as well as for the upcoming years up to 2025. Results show that CA–ANN–Fuzzy with 83% kappa coefficient performs significantly better than conventional CA (with 51% kappa coefficient) and CA–ANN (with 79% kappa coefficient) models in simulating orchard loss. The historical data shows a considerable loss of 26% during the last three decades, while the CA–ANN–Fuzzy simulation reveals a considerable future loss of 7% of Maragheh’s orchards in 2025 due to urbanization. These areas require special attention and must be protected by the local government and decision-makers.  相似文献   

12.
This paper investigates statistical relationships between land use/land cover (LULC), Landsat-7 ETM+ imagery and landscape mosaic structure in southern Cameroon where the conversion of tropical rain forest to shifting cultivation leads to dynamic processes, acting on the spatial aggregation of various LULC types. A Global Positioning System (GPS) was used in the field to identify a total of 171 shifting cultivation patches representing eight LULC types in two sub-areas. Because of the lack of a cloud-free image for the date of field sampling, the ETM+ imagery was acquired 2 months after field survey, during which it was assumed that no significant changes in LULC occurred (all dry season). Per pixel correlations were developed between spectral reflectance data, vegetation indices and LULC. As an exploratory study, several statistical methods (analysis of variance, means separations (Tukey HSD), principal component analysis (PCA), geo-statistical analysis, image classification and landscape metrics) were applied on point data and sensor images for evaluating the spatial variability within the landscape. Most variables explained 30–72% of LULC variation in the whole dataset. Those variables with high information content of LULC (infrared bands 4, 5, 7 and derived indices and PC1) also showed long ranges (6 km) spatial dependence as compared to those varying only within 1 km range. The results of these statistical analyses suggested the need to group some LULC types and the application of the Maximum Likelihood Classifier (MLC) for supervised classification provided a LULC map with the highest accuracy (81%) after consolidation of perennial LULC types, such as bush fallow, forest fallow and cocoa plantations. Landscape metrics computed from this map showed a high level of patch diversity and connectivity within the landscape and provided input data that can further be used to simulate predictive maps as substitute to cloud-covered sensor imageries. Landsat-7 ETM+ imagery proved to be useful in discriminating (with about 80% accuracy) the most dynamic LULC types such cropped plots and young fallow patches (shifting every season) and the extension front of the agricultural landscape.  相似文献   

13.
Spatio‐temporal prediction and forecasting of land surface temperature (LST) are relevant. However, several factors limit their usage, such as missing pixels, line drops, and cloud cover in satellite images. Being measured close to the Earth's surface, LST is mainly influenced by the land use/land cover (LULC) distribution of the terrain. This article presents a spatio‐temporal interpolation method which semantically models LULC information for the analysis of LST. The proposed spatio‐temporal semantic kriging (ST‐SemK) approach is presented in two variants: non‐separable ST‐SemK (ST‐SemKNSep) and separable ST‐SemK (ST‐SemKSep). Empirical studies have been carried out with derived Landsat 7 ETM+ satellite images of LST for two spatial regions: Kolkata, India and Dallas, Texas, U.S. It has been observed that semantically enhanced spatio‐temporal modeling by ST‐SemK yields more accurate prediction results than spatio‐temporal ordinary kriging and other existing methods.  相似文献   

14.
Performance evaluation is a critical step for land use/land cover (LULC) change modelling. It can be conducted through pixel quantity and its geographical location according to majority of current approaches. It is hence important to know to what extent spatial patterns of a given landscape are properly replicated in simulated LULC maps. Therefore, a new validation metric, named as landscape accuracy metric (LAM), is introduced by inspiration from landscape ecology. Unlike pixel quantity validation metrics, model performance is measured by LAM through quantifying spatial patterns including structure, composition and configuration attributes. The functionality of LAM was studied to assess the performance of the built-up change simulation under historical, ecological and stochastic scenarios, applying Cellular Automata Markov model. LAM is a flexible measure such that modellers can apply this metric through adding or eliminating various metrics of their interest in a selective manner and under different environmental circumstances.  相似文献   

15.
In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of “returning farmland to transportation and huge expansion in military camps” was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time. Supported by the Al-Basrah University, Iraq, the Geo-information Science and Technology Program (No. IRT 0438)China).  相似文献   

16.
Coastal zones are most vulnerable for landuse changes in this rapid industrialization and urbanization epoch. It is necessary to evaluate land use — land cover (LULC) changes to develop efficient management strategies. The main objective of this paper is to evaluate and quantity Abu Dhabi coastal zone LULC changes from 1972 to 2000 using multi-temporal LANDSAT satellite data and digital change detection techniques. Supervised classification coupled with expert visual interpretation techniques were used to produce LULC classified images with an accuracy of 88%. Change detection process was achieved by applying post-classification comparison techniques in ENVI software. From this study it has been observed that the important coastal landuse types of Abu Dhabi coast .i.e. wetlands and woody Vegetation (Mangrove, represented by a single species,Avicennia marina) have been reduced drastically in their extent due to reclamation, dredging, tipping and other anthropogenic activities along the coastal zone. However, it has been observed that there is rapid increase in the man-made plantation and managed vegetation from 1990 to 2000 due to the Abu Dhabi government initiation. This study has given good insight into Abu Dhabi coastal zone changes during last 3 decades.  相似文献   

17.
This paper presents a spatial autoregressive (SAR) method-based cellular automata (termed SAR-CA) model to simulate coastal land use change, by incorporating spatial autocorrelation into transition rules. The model captures the spatial relationships between explained and explanatory variables and then integrates them into CA transition rules. A conventional CA model (LogCA) based on logistic regression (LR) was studied as a comparison. These two CA models were applied to simulate urban land use change of coastal regions in Ningbo of China from 2000 to 2015. Compared to the LR method, the SAR model yielded smaller accumulated residuals that showed a random distribution in fitting the CA transition rules. The better-fitting SAR model performed well in simulating urban land use change and scored an overall accuracy of 85.3%, improving on the LogCA model by 3.6%. Landscape metrics showed that the pattern generated by the SAR-CA model has less difference with the observed pattern.  相似文献   

18.
ABSTRACT

To assess the effects of the Grain for Green Program (GGP) on soil erosion is essential to support better land management policies in the Chinese Loess Plateau. Studies on the evaluation of the effects of the GGP on soil erosion have garnered heightened attention. However, few studies examined the efficiency of GGP on soil erosion control through spatial relationship analysis. Thus, this study focuses on analyzing the spatial variation relationship between soil erosion and GGP in northern Shaanxi, Chinese Loess Plateau, from 1988 to 2015. The Universal Soil Loss Equation was used to quantify changes in soil erosion at the regional and watershed scales, and the Geographically Weighted Regression model was used to analyze the spatial relationships between land use and land cover (LULC) and soil erosion. Our results indicated that the major characteristic of LULC change during the GGP was a rapid increase of vegetation area and a rapid decrease of cropland. Bare lands contributed to the most serious soil loss, followed by croplands and sparse grasslands. The GGP had a globally positive influence on the decrease in soil erosion over the study area, but the amount of soil erosion in western and northern regions maintained a severe level. Spatial heterogeneity in the nature of the relationships among different vegetation, croplands, and soil erosion was also observed. The change rate of wood and the change rate of soil erosion in northern sub-watershed represented a negative relationship, while the change rate of sparse grassland was negatively correlated to the change rate of soil erosion in 21 sub-watersheds, account for 72% of the study area. The GGP implemented in northern sub-watersheds were more effective for soil erosion control than southern sub-watersheds. We propose that current areas of vegetation can support soil erosion control in the whole northern Shaanxi, but local-scale ecological restoration can be considered in northern sub-watersheds.  相似文献   

19.
This study aims to quantify the landscape spatio-temporal dynamics including Land Use/Land Cover (LULC) changes occurred in a typical Mediterranean ecosystem of high ecological and cultural significance in central Greece covering a period of 9 years (2001–2009). Herein, we examined the synergistic operation among Hyperion hyperspectral satellite imagery with Support Vector Machines, the FRAGSTATS® landscape spatial analysis programme and Principal Component Analysis (PCA) for this purpose. The change analysis showed that notable changes reported in the experimental region during the studied period, particularly for certain LULC classes. The analysis of accuracy indices suggested that all the three classification techniques are performing satisfactorily with overall accuracy of 86.62, 91.67 and 89.26% in years 2001, 2004 and 2009, respectively. Results evidenced the requirement for taking measures to conserve this forest-dominated natural ecosystem from human-induced pressures and/or natural hazards occurred in the area. To our knowledge, this is the first study of its kind, demonstrating the Hyperion capability in quantifying LULC changes with landscape metrics using FRAGSTATS® programme and PCA for understanding the land surface fragmentation characteristics and their changes. The suggested approach is robust and flexible enough to be expanded further to other regions. Findings of this research can be of special importance in the context of the launch of spaceborne hyperspectral sensors that are already planned to be placed in orbit as the NASA’s HyspIRI sensor and EnMAP.  相似文献   

20.
This research aimed to explore the fusion of multispectral optical SPOT data with microwave L-band ALOS PALSAR and C-band RADARSAT-1 data for a detailed land use/cover mapping to find out the individual contributions of different wavelengths. Many fusion approaches have been implemented and analyzed for various applications using different remote sensing images. However, the fusion methods have conflict in the context of land use/cover (LULC) mapping using optical and synthetic aperture radar (SAR) images together. In this research two SAR images ALOS PALSAR and RADARSAT-1 were fused with SPOT data. Although, both SAR data were gathered in same polarization, and had same ground resolution, they differ in wavelengths. As different data fusion methods, intensity hue saturation (IHS), principal component analysis, discrete wavelet transformation, high pass frequency (HPF), and Ehlers, were performed and compared. For the quality analyses, visual interpretation was applied as a qualitative analysis, and spectral quality metrics of the fused images, such as correlation coefficient (CC) and universal image quality index (UIQI) were applied as a quantitative analysis. Furthermore, multispectral SPOT image and SAR fused images were classified with Maximum Likelihood Classification (MLC) method for the evaluation of their efficiencies. Ehlers gave the best score in the quality analysis and for the accuracy of LULC on LULC mapping of PALSAR and RADARSAT images. The results showed that the HPF method is in the second place with an increased thematic mapping accuracy. IHS had the worse results in all analyses. Overall, it is indicated that Ehlers method is a powerful technique to improve the LULC classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号