首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large volumes of solid waste material will be produced during the commercial production of shale oil. An alternative to the disposal of the solid waste product is utilization. One potential use of spent oil shale is for the stabilization of hazardous organic compounds. The objective of this study was to examine the adsorption of pyridine, commonly found in oil shale process water, by spent oil shale. The adsorption of pyridine by fresh and weathered samples of combusted New Albany Shale and Green River Formation oil shale was examined. In general, pyridine adsorption can be classified as L-type and the isotherms modeled with the Langmuir and Freundlich equations. For the combusted New Albany Shale, weathering reduced the predicted pyridine adsorption maximum and increased the amount of pyridine adsorbed at low solution concentrations. For the combusted Green River Formation oil shales, weathering increased the predicted pyridine adsorption maximum. The pyridine adsorption isotherms were similar to those produced for a combusted Australian oil shale. Although adsorption can be mathematically described by empirical models, the reduction in solution concentrations of pyridine was generally less than 10 mg/l at an initial concentration of 100 mg/l. Clearly, the observed reduction in solution pyridine concentrations does not sufficiently justify using spent oil shale as a stabilizing medium. However, data in the literature suggest that other organic compounds can be effectively removed from solution by spent oil shale and that adsorption is dependent on process conditions and organic compound type.  相似文献   

2.
The determination of trace element concentrations in oil shale before mining and retorting is required for proper solid-waste management planning. Using routine Fischer assay oil yield data collected during resource characterization as indicators of potential trace element concentrations could lead to a standard method of identifying strata containing high trace element levels. In order to determine a correlation between trace element concentrations and oil yield, shale samples were selected from four statigraphic zones of the Parachute Creek Member of the Green River Formation for analysis. All samples were analyzed for total elemental concentrations, mineralogy, and Fischer assay oil yield. The results of these analyses demonstrated that the Mahogany zone shales contain significantly greater trace element concentrations (antimony, arsenic, cadmium, chromium, copper, lead, lithium, mercury, molybdenum, nickel, selenium, silver, and vanadium) than the other three shale zones. These high trace element concentrations have been identified within well-defined interbedded tuff deposits in the Mahogany zone. In addition, all trace elements evaluated, except boron, show either increasing or decreasing concentrations as oil yield increases within all oil shale zones. With an increased number of analyses of existing oil shale cores, oil yield data will be correlated to specific stratigraphic units containing high trace element concentrations.  相似文献   

3.
Spent oil shale (or blaes) is a potentially valuable engineering material and is present in large quantities in the West Lothian area of Scotland. It can be used successfully as general fill or capping layer. However, due to its high quality it may be more suited to use as selected granular fill or sub-base. In particular, cement stabilisation will reduce frost susceptibility and may be a particularly appropriate outlet for spent oil shale for use as sub-base. However, an increase in control and testing may be required, having an effect on the cost of using such materials. Conditions under which spent oil shale should not be used are also identified.  相似文献   

4.
The Shengli River–Changshe Mountain oil shale zone represents a potentially large marine oil shale resource in China. With the aim of better understanding the geochemistry of trace elements in marine oil shale and its combustion residues, 40 raw samples, 27 oil shale combustion residues and 29 selected minerals from Changliang Mountain oil shale are studied for geochemical analyses. The contents of Se, Cd, Mo, As, Cs, Pb, Sr and U in the oil shale samples are enriched from 1.47 to 33.91 times as compared with the Clarke values, whereas the concentrations of other elements are slightly higher/lower than the respective worldwide means. The most enriched elements in oil shale combustion residues are Se, Cd, Mo, As and U with enrichment values from 4.78 to 50.92. Trace elements with high volatile behaviour such as As, Co, Ni, Sc, Sn and V occur predominantly in organic matter and/or sulphides. Other non-volatile or slightly volatile trace elements (e.g., Be, Bi, Cs, Cu, Ga, Hf, Li, Nb, Rb, Ta, Th, W, Zr and REEs) may occur mainly in original and relatively refractory minerals in raw oil shale. The potentially hazardous trace elements in Changliang Mountain oil shale include As, Cd, Mo and Se. Arsenic and Se are controlled mainly by Fe-bearing minerals (probably pyrite) in Changliang Mountain oil shale. Cadmium is present mainly in dolomite, while Mo occurs mainly in organic matter.  相似文献   

5.
Summary This paper describes an experimental program that was conducted in 1981 through 1983 in the Anvil Points Oil Shale Mine near Rifle, Colorado. The objective was to examine the response of the kerogen rich oil shale to explosive charges in relatively large scale tests. Due to an alleged shortage of oil at that time the price per barrel of crude oil had reached nearly $40 and the United States was looking at oil shale as a possible source of hydrocarbon fuels.It was the intention of the fragmentation program to develop a modified in situ retort to recover the oil from the fragmented shale. Programs were already underway wherein the oil shale was being mined, transported to the surface, and retorted to remove the oil. This surface retorting resulted in a tremendous amount of spent shale (shale with the kerogen removed) which had to be handled and it was felt that this would lead to serious environmental problems. The scheme being investigated in the program at Anvil Points was one in which about 25% of the shale is mined, moved to the surface, and retorted. The remaining 75% of the shale was to be fragmented in place and an underground retort formed so that the oil could be removed without the necessity of transporting the shale to the surface.A successful method was not developed but the results of the program did provide information on the response of shale to both single hole and multiple hole explosive charges.  相似文献   

6.
Cross polarization, magic-angle spinning 13C NMR measurements have been made on raw oil shales that represent a variety of geologic ages, origins, depositional environments and source locations. A high degree of correlation was established between the fraction of aliphatic carbon measured by 13C NMR, and the genetic potential, calculated from Fischer assay data. The correlation is independent of the type of kerogen in the raw shale, and its degree of evolution. A short discussion on the validity of various correlations between physical/chemical properties of oil shales and Fischer assay oil yields is given.  相似文献   

7.
The partitioning of arsenate between Paraho indirectly retorted and directly retorted oil shales and a combusted oil shale was examined with batch equilibrium adsorption isotherms. Arsenate adsorption was found to conform to the Freundlich adsorption model, and the combusted oil shale was found to have the greatest affinity for arsenate. The indirectly and directly retorted oil shale samples did not have statistically different affinities for arsenate. The greater adsorption capacity of combusted oil shale for arsenate was attributed to greater surface area and free iron oxide. Arsenate adsorption by combusted oil shale was not reversible. Upon dilution of the solution phase, arsenate did not desorb. Upon dilution of the retorted oil shale solutions, arsenate continued to be removed from solution. An evaluation of metal arsenate stability in the spent oil shale systems indicated that the retorted oil shale solutions were highly supersaturated with respect to magnesium and barium arsenates, whereas the combusted oil shale solutions were not supersaturated. The data were interpreted to indicate that adsorption reactions control arsenate solubility at short reaction times. As reaction times increase, precipitation reactions control soluble arsenate concentrations.  相似文献   

8.
胜利河油页岩位于青藏高原腹地的羌塘盆地,具单层厚度薄、区域延伸长的特点,为羌塘盆地新发现的又一处海相油页岩.采用GC-MS(IRMS)分析方法对该油页岩进行了研究,结果表明,胜利河油页岩(11层以及13层)含有丰富的正烷烃、类异戊二烯烃、萜类化合物和甾类化合物.正构烷烃呈前高后低的单峰型分布,nC15、nC16为主峰碳,轻烃组分占有绝对优势,OEP值0.96~0.97,接近平衡值1.00,Pr/Ph为0.57~0.75,显示弱的植烷优势;萜烷丰度顺序为五环三萜烷》三环萜烷》四环萜烷;规则甾烷呈不对称的"V"字型分布,表现为C27》C29》C28的分布特征.这些特征与剖面中其他岩性的生物标志物特征存在一定的差异,9层泥晶灰岩C21-/C21 值为0.86,轻烃优势并不明显;14层泥灰岩C21-/C21 值为0.41,具有明显的重碳优势;9层泥晶灰岩以及12层泥灰岩规则甾烷呈C29》C27》C28的特征也与油页岩层存在显著的差异.这些差异不仅反映了油页岩层与其他岩性间生物母源输入的差异,也反映了他们之间沉积环境的不同.胜利河地区油页岩的形成是综合因素控制的结果,古地理变化、海平面升降、生物群差异以及气候的变化均对该区油页岩的形成有一定的影响.  相似文献   

9.
中国中西部前陆盆地的地质特征及油气聚集   总被引:92,自引:1,他引:92  
油页岩是一种重要的替代能源资源,中国油页岩主要分布于中国15个省份(区),总查明资源储量329.89亿t,居世界第四位。其中,吉林省、广东省、辽宁省分别为174.27亿t、55.15亿t和45.05亿t,并分别占全国油页岩探明资源储量的52.83%、16.72%和13.65%。中国油页岩具有沉积时代以新生代为主,沉积环境以陆相为主的特征。中国高含油率的油页岩主要分布在新生代小型聚煤断陷盆地,而低含油率油页岩主要分布在晚白垩纪大型含油气坳陷盆地,且资源量巨大。中国小型断陷盆地油页岩,如桦甸油页岩的形成主要受构造、气候作用影响;而大型坳陷盆地,如松辽盆地油页岩的形成与全球缺氧事件有关,而缺氧事件常与海平面变化关系密切。新的评价体系把油页岩边界品位-含油率(ω)定为3.5%,并按不同品级、不同埋藏深度进行油页岩资源系统评价。坚持综合开发和利用,走炼油-化工-发电-多金属提取-建材一条龙联合生产是最佳开发利用途径。中国油页岩工业在中长期内将可实现油页岩工业化,具有广阔前景。  相似文献   

10.
The Shengli River-Changshe Mountain oil shale zone, located in the North Qiangtang depression, northern Tibet plateau, represents a potentially large marine oil shale resource in China. Twenty-eight samples including oil shale, micritic limestone and marl were collected from the Shengli River area to determine the contents and distribution patterns of rare earth elements (REEs) in marine oil shale. Oil shale samples from the Shengli River area have high ash yield (61.86–67.48%) and TOC content (8.02–13.67%) with low total sulfur (St,d) content (0.76–1.39%) and intermediate shale oil content (3.60–16.30%). The total rare earth element (ΣREE) content in oil shale samples is notably depleted (46.79–67.90 μg/g), approximately one third of the mean value of the North American Shale Composite (NASC), and lower than that of world-wide black shales and Chinese coals, but higher than that of world-wide coals and micritic limestone samples (29.21 μg/g) from the Shengli River area. The oil shale samples from the Shengli River area exhibit shale-like Chondrite or NASC-normalized REE patterns similar to those of micritic limestone and marl samples from this area, indicating that REEs of these different lithological samples may have been derived from a similar terrigenous source.REE contents of oil shale samples are highly positive correlated with ash yield and show a positive correlation with Fe and a weakly positive correlation with organic sulfur, and the vertical variations of REEs mainly follow those of Si, Al, K and Ti. All these facts indicate that the REE contents in oil shale seams are mainly controlled by clay minerals and, to a lesser extent, by pyrite, as well as partly associated with oil shale organic constituents. Rare earth elements in the Shengli River oil shale have originated from two sources: a felsic volcanic rock source and a clastic or/and limestone source.  相似文献   

11.
Physical and chemical characterization of spent oil shale (OS) from El-Lajjun area has been carried out and compared with the original OS. The spent shale (SS) is subjected to leaching tests to detect the possibilities of heavy metals released from it into the environment. Standard column leaching experiments have revealed no detectable release of heavy metals to the percolating water. The effectiveness of the SS in removing Pb2+ from wastewater has been investigated. The SS is very efficient in removing most of Pb2+ where 1 m3 of SS has an efficiency to remove from 64 to 94% of Pb2+ from about 1,300 m3 wastewater sample containing 50 ppm Pb2+. The efficiency decreases substantially with increasing Pb2+ concentration in the wastewater. In real situations, where Pb2+ concentration is very low (i.e., less than 5 ppm), the efficiency of the SS is expected to be 100%.  相似文献   

12.
页岩油分类与评价   总被引:11,自引:1,他引:10       下载免费PDF全文
页岩油是以游离(含凝析态)、吸附及溶解(可溶解于天然气、干酪根和残余水等)态等多种方式赋存于有效生烃泥页岩地层层系中且具有勘探开发意义的非气态烃类。根据泥页岩地层中所含烃类相态、成因机理及勘探开发等特点,将页岩类油气划分为页岩气和页岩油等两类八种。结合页岩油特点,指出了我国页岩油形成条件和分布规律,即规模分布的有效生烃泥页岩、形成于深水-半深水相的富有机质泥页岩、较高的有机质丰度和适当的热演化程度以及较好的基质物性条件等是页岩油形成的主要条件。建立了中国陆相断陷湖盆页岩油发育模式,指出概率体积法可以作为页岩油资源评价的主要方法,提出了页岩油远景区、有利区及目标区优选的参数体系和标准。作为非常规油气能源的主要类型之一,页岩油将会对我国能源结构产生重要影响。  相似文献   

13.
The Eocene Maoming oil shale from Guangdong Province occurs as a laterally uniform stratigraphic section, typically 20–25 m thick, from which the aliphatic hydrocarbon constituents of six representative samples were investigated using GC and C-GC-MS. The sediments evaluated included the basal lignite, a vitrinite lens from the overlying claystone, and four intervals from the massive oil shale bed. As expected, the lignite and vitrinite differ markedly from the oil shales. The lignite is dominated by bacterial hopanoids and components of higher plant origin, including C29 steroids and triterpenoids such as oleanenes. Visually, the oil shale samples show corroded and degraded phytoclasts, spores, wispy particles of fluorescent organic material attributable to dinoflagellates and, especially in the uppermost sample, colonial algal bodies. The distributions of biological markers in the oil shales show many features in common, notably a dominance of dinoflagellate-derived 4-methylsteroids, and a significant proportion of higher-plant derived n-alkanes with marked odd-over-even carbon number predominance. Overall, they exhibit several features that resemble characteristics of the Messel shale. The hydrocarbons of the lowest shale horizon suggest that there may have been a gradual transition between deposition of the original peat and the subsequent oil shales. The aliphatic hydrocarbons of the uppermost shale are dominated by a number of C31 and C33 botryococcane homologues and other unusual branched alkanes possibly derived from green algae. All of the samples are immature. Overall, molecular and microscopic examination of the stratigraphic succession of the Maoming oil shale suggests a shallow, lacustrine environment within which peats were deposited. This lake subsequently deepened to support abundant algal populations, especially dinoflagellates, culminating in a dominance of botryococcoid algae.  相似文献   

14.
【研究目的】本文旨在通过对比准噶尔盆地吉木萨尔地区二叠系芦草沟组高品位和低品位油页岩的品质和成因差异,揭示高品位油页岩的特殊成矿条件。【研究方法】对吉木萨尔地区两个剖面采集的露头样品,进行TOC、热解、含油率、微量、稀土元素测试,从而开展高品位和低品位油页岩有机地球化学特征,微量稀土元素特征及成矿条件差异分析。【研究结果】研究区高品位油页岩有机质类型为I型;低品位油页岩有机质类型为I-II1型。高品位和低品位油页岩中B、Ba、Cr、Nb、Sr、V、Zr等微量元素含量差异明显,高品位油页岩中各稀土元素平均含量和各样品稀土元素分布区间都小于低品位油页岩,且外源元素富集程度也相对更低,显示了更少的陆源碎屑输入。微量元素比值显示,研究区油页岩形成于温暖湿润气候,淡水—半咸水,还原环境。高品位油页岩与低品位油页岩相比,形成时水体盐度值更大,有机质生产力更高。【结论】温暖湿润气候背景下,相对较少的陆源碎屑供给,减少了对有机质的稀释和氧化破坏,同时较高的水体盐度值更利于水体分层,从而形成一个长时间的还原环境,再加上更高的有机质生产力,从而形成了高品位油页岩。  相似文献   

15.
为了了解黄县盆地煤与油页岩的形成环境及其综合开发利用潜力,运用有机岩石学方法,对其有机岩石学和地球化学特征进行了研究。结果表明,煤层与油页岩中的有机质主要形成于陆上高等植物。盆地边界断层控制着成煤作用过程:当断层停止活动时,形成泥炭沼泽;当断层重新活动时,盆地下沉,湖水侵入泥炭沼泽,形成油页岩。油页岩中含有丰富的角质体和壳屑体,导致长链饱和烃增加。   相似文献   

16.
以鄂尔多斯盆地三叠系延长组长7段泥页岩层系为研究对象,基于大量实际地质样品统计,建立其生、排油模式,并认为长7段页岩油的可动门限(排烃门限)在70 mg/gTOC,并以此为基础建立了适用于鄂尔多斯盆地长7段泥页岩层系页岩油含油性和可动性评价模板。评价模板中将该区页岩油划分为有效资源、潜在资源和无效资源三大类。以H317井实际地质应用实例,使用评价模板对其不同岩性进行了系统分类。H317井长7段泥页岩层系中非源岩夹层段及部分块状泥岩等可作为页岩油勘探开发的有效资源和有利目标,黑色页岩虽然含油性较好,但流体组份偏重,流动性差,针对这类资源可采用原位加热改质后开采等工程技术手段,因此可作为页岩油勘探开发的潜在资源。  相似文献   

17.
油页岩的综合开发与利用   总被引:27,自引:4,他引:27  
油页岩是一种重要的能源矿产,其资源量巨大,是石油和天然气的重要替代资源。本文简介了国内外油页岩开发利用的历史和现状,综述了油页岩综合开发利用的方式和途径。油页岩除用来炼油、燃烧发电外,其灰渣可用于材料制造、废气和污水处理。油页岩还在农业、制取氢气和有机酸以及提取金属元素等方面有广泛的用途。研究表明,油页岩综合开发利用能取得良好的资源、环境、经济及社会效益,对实现资源可持续发展具有重要作用。  相似文献   

18.
Solid state nuclear magnetic resonance techniques were used to measure the fraction of aliphatic carbon in oil shales from United States deposits, ranging in age from Ordovician to Tertiary. The aliphatic carbon fraction was shown to correlate with the fraction of organic matter converted to oil during Fischer assay. The fraction of organic matter convertible to oil is a primary factor in evaluating the oil potential of an oil shale resource. Nuclear magnetic resonance determines this in a nondestructive, easily interpreted bulk analysis of the whole rock.  相似文献   

19.
利用岩心、钻井和分析测试资料,对民和盆地油页岩的沉积环境、层序地层、赋存、工业品质和地球化学特征进行了研究,将民和盆地油页岩划分为3种成因类型:油一层为深湖—半深湖低含油率腐泥型油页岩,油三层为浅湖相低含油率腐殖—腐泥型油页岩,油四层为湖沼相中含油率腐泥—腐殖型油页岩。研究成果表明:形成于深湖—半深湖相的油一层分布范围广,厚度较大,油页岩含油率不高,属高灰分低含油率的油页岩;形成于湖沼相的油四层厚度较小,平面上分布不稳定,含油率较高,属中灰分中含油率的油页岩。  相似文献   

20.
A new method is proposed to analyze the pore-scale mechanisms and characterization of light oil storage in shale nanopores, which is based on the Hydrocarbon Vapor Adsorption (HVA) and Pore Calculation Model (PCM). First, the basic principle of the HVA-PCM method is introduced, and the experimental/mathematical analysis processes are given. Then, the HVA-PCM method is applied to shale samples to analyze the mechanisms and characterization of light oil storage in shale nanopores. The results provide insights into the pore-scale oil storage mechanisms, oil storage structure, oil film thickness, oil distribution within different sized pores, and the oil storage state. Finally, the advantages and limitations of the HVA-PCM method are discussed, and suggestions for further improvement are proposed. Overall, the HVA-PCM method is a powerful tool for extracting quantitative information on the light oil storage in shale nanopores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号