首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the most powerful X-ray outbursts from neutron stars in eleven Magellanic high-mass X-ray binaries and three pulsating ultraluminous X-ray sources. Most of the outbursts rise to L_(max) which is about the level of the Eddington luminosity, while the remaining more powerful outbursts also appear to recognize that limit when their emissions are assumed to be anisotropic and beamed toward our direction. We use the measurements of pulsar spin periods P_S and their derivatives P_S to calculate the X-ray luminosities L_p in their faintest accreting("propeller-line") states. In five cases with unknown P_S, we use the lowest observed X-ray luminosities, which only adds to the heterogeneity of the sample. Then we calculate the ratios L_p/L_(max) and we obtain an outstanding confluence of theory and observations from which we conclude that work done on both fronts is accurate and the results are trustworthy: sources known to reside on the lowest Magellanic propeller line are all located on/near that line, whereas other sources jump higher and reach higher-lying propeller lines. These jumps can be interpreted in only one way, higher-lying pulsars have stronger surface magnetic fields in agreement with previous empirical results in whichP_S and L_p values were not used.  相似文献   

2.
We analyze the statistical distribution of neutron stars at the stage of a supersonic propeller. An important point of our analysis is allowance for the evolution of the angle of inclination of the magnetic axis to the spin axis of the neutron star for the boundary of the transition to the supersonic propeller stage. We have determined the spin period distributions of pulsars at the propeller stage for two models: the model with hindered particle escape from the stellar surface and the model with free particle escape. As a result, we have shown that consistent allowance for the evolution of the inclination angle in the region of extinct radio pulsars for the two models leads to an increase in the total number of neutron stars at the supersonic propeller stage. This increase stems from the fact that when allowing for the evolution of the inclination angle χ for neutron stars in the region of extinct radio pulsars and, hence, for the boundary of the transition to the propeller stage, this transition is possible at shorter spin periods (P ~ 5–10 s) than assumed in the standard model.  相似文献   

3.
Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT data and characterized by thermal X-ray spectra are known. They exhibit very similar properties and despite intensive searches their number remained constant since 2001 which led to their name “The Magnificent Seven”. Five of the stars exhibit pulsations in their X-ray flux with periods in the range of 3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the X-ray spectra which are interpreted as cyclotron resonance absorption lines by protons or heavy ions and/or atomic transitions shifted to X-ray energies by strong magnetic fields of the order of 1013 G. New XMM-Newton observations indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals variations in derived emission temperature and absorption line depth with pulse phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are interpreted as due to free precession of the neutron star. Modeling of the pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the surface temperature distribution of the neutron stars indicating hot polar caps which have different temperatures, different sizes and are probably not located in antipodal positions.  相似文献   

4.
The state of a subsonic propeller in the evolutionary tracks of magnetized compact stars is intermediate between the states of a supersonic propeller and an accretor. We show that neutron stars in this state would manifest themselves as accretion-powered pulsars of low (or moderate) luminosity. The criteria that allow subsonic propellers to be distinguished from accretors include a soft X-ray spectrum, a limited range of admissible spin periods, and a rapid spindown.  相似文献   

5.
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6−723533) and 700 s (CXOU J010206.6−714115), and present observations of two previously known pulsars RX J0057.3−7325 (SXP101) and SAX J0103.2−7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6−714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a subset of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour–colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources.  相似文献   

6.
We study the statistical distribution of extinct radio pulsars at the stage of an ejector. An important element that distinguishes our study from other works is a consistent allowance for the evolution of the angle of inclination of the magnetic axis to the spin axis. We determined the distribution of extinct radio pulsars in spin period for two models: the model with hindered particle escape from the neutron-star surface and the model with free particle escape. The total number of extinct radio pulsars is shown to be much smaller than that in the model in which the evolution of the angle of axial inclination is disregarded. This is because when the evolution of the angle of axial inclination is taken into account, the transition to the stage of a propeller occurs at much shorter neutron-star spin periods (P ~ 5–10 s) than assumed previously.  相似文献   

7.
Traditionally, studies aimed at inferring the distribution of birth periods of neutron stars are based on radio surveys. Here we propose an independent method to constrain the pulsar spin periods at birth based on their X-ray luminosities. In particular, the observed luminosity distribution of supernovae (SNe) poses a constraint on the initial rotational energy of the embedded pulsars, via the     correlation found for radio pulsars, and under the assumption that this relation continues to hold beyond the observed range. We have extracted X-ray luminosities (or limits) for a large sample of historical SNe observed with Chandra , XMM and Swift , which have been firmly classified as core-collapse SNe. We have then compared these observational limits with the results of Monte Carlo simulations of the pulsar X-ray luminosity distribution for a range of values of the birth parameters. We find that a pulsar population dominated by millisecond periods at birth is ruled out by the data.  相似文献   

8.
Using X-ray observations from Chandra and XMM-Newton and radio observations from the Australia Telescope Compact Array (ATCA), we have examined the merging environment of the bimodal cluster Abell 3395. From X-ray data we have produced thermodynamic maps of the cluster. The Wide Angle Tail (WAT) galaxy seen in the radio is slightly offset from the X-ray emission peak of the southern part of the cluster. The unsharp masked Chandra image of the cluster does not show any deficit in the X-ray flux near the location of the source possibly because the thermal plasma has leaked into the cavities.  相似文献   

9.
Observations of AGNs and microquasars by ASCA, RXTE, Chandra and XMM-Newton indicate the existence of broad X-ray emission lines of ionized heavy elements in their spectra. Such spectral lines were discovered also in X-ray spectra of neutron stars and X-ray afterglows of GRBs. Recently, Zakharov et al. [MNRAS 342 (2003) 1325] described a procedure to estimate an upper limit of the magnetic fields in regions from which X-ray photons are emitted. The authors simulated typical profiles of the iron Kα line in the presence of magnetic field and compared them with observational data in the framework of the widely accepted accretion disk model. Here we further consider typical Zeeman splitting in the framework of a model of non-flat accretion flows, which is a generalization of previous consideration into non-equatorial plane motion of particles emitting X-ray photons. Using perspective facilities of space borne instruments (e.g., Constellation-X mission) a better resolution of the blue peak structure of iron Kα line will allow to evaluate the magnetic fields with higher accuracy.  相似文献   

10.
New, high spectral resolution X-ray observations from astrophysical photoionised plasmas have been recorded in recent years by the Chandra and XMM-Newton orbiting telescopes. These observations provide a wealth of detailed information and have motivated new efforts at developing a detailed understanding of the atomic kinetics and radiation physics of photoionised plasmas. The Z facility at Sandia National Laboratories is a powerful source of X-rays that enables us to produce and study photoionised plasmas in the laboratory under well characterised conditions. We discuss a series of radiation-hydrodynamic simulations to help understand the X-ray environment, plasma hydrodynamics and atomic kinetics in experiments where a collapsing wire array at Z is used as an ionising source of radiation to create a photoionised plasma. The numerical simulations are used to investigate the role that the key experimental parameters have on the photoionised plasma characteristics.  相似文献   

11.
We propose a unified picture of high magnetic field radio pulsars and magnetars by arguing that they are all rotating high-field neutron stars but that their magnetic axes have different orientations with respect to their rotation axes. In strong magnetic fields where photon splitting suppresses pair creation near the surface, the high-field pulsars can have active inner accelerators while the anomalous X-ray pulsars cannot. This can account for the very different observed emission characteristics of the anomalous X-ray pulsar 1E 2259+586 and the high-field radio pulsar PSR J1814-1744. A predicted consequence of this picture is that radio pulsars having surface magnetic fields greater than about 2x1014 G should not exist.  相似文献   

12.
I review our understanding of the evolution of the spin periods of neutron stars in binary stellar systems, from their birth as fast, spin-powered pulsars, through their middle life as accretion-powered pulsars, upto their recycling or “rebirth” as spin-powered pulsars with relatively low magnetic fields and fast rotation. I discuss how the new-born neutron star is spun down by electromagnetic and “propeller” torques, until accretion of matter from the companion star begins, and the neutron star becomes an accretion-powered X-ray pulsar. Detailed observations of massive radio pulsar binaries like PSR 1259-63 will yield valuable information about this phase of initial spindown. I indicate how the spin of the neutron star then evolves under accretion torques during the subsequent phase as an accretion-powered pulsar. Finally, I describe how the neutron star is spun up to short periods again during the subsequent phase of recycling, with the accompanying reduction in the stellar magnetic field, the origins of which are still not completely understood.  相似文献   

13.
年轻脉冲星多处于超新星遗迹(Supernova Remnant, SNR)中, 其分为转动供能脉冲星(Rotation-powered SNR-PSR)、磁星(Magnetar)和中心致密天体(Central Compact Object, CCO), 这3类年轻脉冲星有着不同的自旋周期及磁场强度分布. % 其中, 遗迹磁星(SNR-Magnetar)的平均自旋周期比转动供能遗迹脉冲星大近一个量级, 平均磁场强度高近两个量级. % 同时, 中心致密天体比转动供能遗迹脉冲星的平均磁场强度低近两个量级. % 这3类年轻脉冲星不同的物理性质, 可能源于其不同的前身星或不同的超新星爆发过程, 也可能源于其中子星诞生后的不同演化过程. % 此外, 转动供能遗迹脉冲星比年轻的转动供能非遗迹脉冲星具有更快的平均自旋周期、更大的平均磁场强度和更短的平均特征年龄. % 这暗示新诞生的中子星经时间约为$10^5$--$10^6$yr的演化过程, 其自旋速度将减小近一半, 同时其磁场强度也将衰减近一半.  相似文献   

14.
We present an analysis of the diffuse hard X-ray emission in the core of the young massive Galactic cluster Westerlund 1 based on a 48 ks XMM-Newton observation. Chandra results for the diffuse X-ray emission have indicated a soft thermal component together with a hard component that could be either thermal or non-thermal. We seek to resolve this ambiguity regarding the hard component exploiting the higher sensitivity of XMM-Newton to diffuse emission. Our new X-ray spectra from the central (2′ radius) diffuse emission are found to exhibit He-like Fe 6.7 keV line emission, demonstrating that the hard emission in the cluster core is predominantly thermal in origin. Potential sources of this hard component are reviewed, namely an unresolved Pre-Main Sequence population, a thermalized cluster wind and Supernova Remnants interacting with stellar winds. We find that the thermalized cluster wind likely contributes the majority of the hard emission with some contribution from the Pre-Main Sequence population. It is unlikely that Supernova Remnants are contributing significantly to the Westerlund 1 diffuse emission at the current epoch.  相似文献   

15.
We present the analysis of 30 ks of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in the inner 30-kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ∼12 keV in the outer regions of the cluster to ∼4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parametrized by a Navarro, Frenk & White model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of
   
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
   
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼     with an integrated mass deposition rate of     within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton .  相似文献   

16.
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the jovian system is a source of X-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are both powerful sources of X-ray emission. Chandra observations revealed X-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions. These ions excite atoms in their surfaces leading to fluorescent X-ray emission lines. These lines are produced against an intense background continuum, including bremsstrahlung radiation from surface interactions of primary magnetospheric and secondary electrons. Although the X-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging X-ray spectrometer in orbit around one or more of these moons, operating from 200 eV to 8 keV with 150 eV energy resolution, would provide a detailed mapping of the elemental composition in their surfaces. Surface resolution of 40 m for small features could be achieved in a 100-km orbit around one moon while also remotely imaging surfaces of other moons and Jupiter's upper atmosphere at maximum regional resolutions of hundreds of kilometers. Due to its relatively more benign magnetospheric radiation environment, its intrinsic interest as the largest moon in the Solar System, and its mini-magnetosphere, Ganymede would be the ideal orbital location for long-term observational studies of the jovian system. Here we describe the physical processes leading to X-ray emission from the surfaces of Jupiter's moons and the properties required for the technique of imaging X-ray spectroscopy to map the elemental composition of their surfaces, as well as studies of the X-ray emission from the planet's aurora and disk and from the Io plasma torus.  相似文献   

17.
We present the results of Chandra and XMM-Newton observations for six hard X-ray sources (IGR J12134-6015, IGR J18293-1213, IGR J18219-1347, IGR J17350-2045, IGR J18048-1455, XTE J1901+014) from the INTEGRAL all-sky survey. Based on these observations, we have improved significantly the localization accuracy of the objects and, therefore, have managed to identify their optical counterparts. Using data from the publicly available 2MASS and UKIDSS infrared sky surveys as well as data from the SOFI/NTT telescope (European Southern Observatory), we have determined the magnitudes of the optical counterparts, estimated their types and (in some cases) the distances to the program objects. A triplet of iron lines with energies of 6.4, 6.7, and 6.9 keV has been detected in the X-ray spectrum of IGR J18048-1455; together with the detection of pulsations with a period of ~1440 s from this source, this has allowed it to be classified as a cataclysmic variable, most likely an intermediate polar. In addition, broadband X-ray spectra of IGR J12134-6015 and IGR J17350-2045 in combination with infrared and radio observations suggest an extragalactic nature of these objects. The source IGR J18219-1347 presumably belongs to the class of high-mass X-ray binaries.  相似文献   

18.
Young T Tauri stars exhibit strong solar-type magnetic activity, with extremely high temperature coronae and energetic flares. In a few systems discovered with Chandra and XMM-Newton there is also evidence for X-ray emission produced by shocks associated with magnetically channeled accretion. A recent 489 ksec Chandra HETG/ACIS-S observation of the classical T Tauri star TW Hydrae has provided a wealth of spectroscopic diagnostics not available in lower signal-to-noise ratio observations. Using line ratios for electron temperature, electron density, and column density we have found that the shock produced by the accelerating material in the accretion stream behaves as predicted by standard theory. However, the properties of the post-shock plasma differ substantially from the predictions of standard 1D shock models (Brickhouse et al. in Astrophys. J. 710:1835, 2010). The accretion process apparently heats the stellar atmosphere up to soft X-ray emitting temperatures, providing hot ions to populate the magnetic corona, in loops, stellar wind, and/or jets. This gas is highly turbulent, as evidenced by non-thermal line broadening. The observed properties of the accretion-fed corona should constrain theoretical models of an accretion-driven dynamo.  相似文献   

19.
Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.  相似文献   

20.
Disks originating from supernova fallback have been suggested to surround young neutron stars. Interaction between the disk and the magnetic field of the neutron star may considerably influence the evolution of the star through the so called propeller effect. There are many controversies about the efficiency of the propeller mechanism proposed in the literature. We investigate the fallback disk-involved spin-down of young pulsars. By comparing the simulated and measured results of pulsar evolution, we present some possible constraints on the propeller torques exerted by the disks on neutron stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号