首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The gas-phase degradation of NH3 in the atmosphere still has many uncertainties. One of them is the possible isomerisation of NH2O to NHOH, as indicated by kinetic studies. Since NH2O is formed during the gas-phase oxidation of ammonia in the troposphere, this reaction can potentially influence the subsequent production of N2O and NOx. So far, the isomerisation has never been implemented into current chemical schemes describing the atmospheric gas-phase degradation of NH3 and its atmospheric relevance has never been assessed. The N2O yield from NH3 degradation is calculated to be in the range of 10–43 %. It depends on the NO2 and O3 concentrations, but is independent of the NH3 concentration. Compared with the results from recent literature, the N2O yield derived from the new mechanism is 20–80% lower, implying a smaller global N2O source strength of 0.4 Tg yr- 1. The production of NH2SO2 seems to be less important for the atmospheric degradation of NH3. NH3 oxidation is a sink for NOx at NOx mixing ratios of more than about 1 ppb and a source at lower NOx burdens.  相似文献   

2.
During the POPCORN campaign between 3 and 24 August 1994 we measured peroxyacetyl nitrate (PAN) in a rural area of Mecklenburg-Vorpommern (North-Eastern Germany) above a corn field. A total of about 5000 PAN measurements were carried out within the three weeks of the campaign. Measured PAN mixing ratios ranged from below the detection limit of 10 ppt up to an afternoon maximum of 1 ppb. The mean value of all data was 140 ppt. The daily mean PAN mixing ratios were typically in the range of 50 to 250 ppt, but during a clean air episode PAN mixing ratios of well below 40 ppt were observed. The characteristic relative diurnal variation of the PAN mixing ratios with a late night/early morning minimum and an afternoon maximum persisted during these episodes. The daily averages of the PAN mixing ratios showed clear episodic variations which coincided with the duration of typical synoptic episodes of two to six days duration. Based on the measurements of the various parameters determining the PAN formation and destruction rates, the local budget for PAN was calculated. During daytime the calculated net photochemical formation rate of PAN was nearly always significantly higher than the observed change of the PAN concentration. This demonstrates that substantial amounts of PAN (often in the range of several hundred ppt/h) were exported from the corn field. The resulting removal of NOx to some extent effects the budget of nitrogen oxides (NOx), but the export of odd oxygen radicals in the form of PAN during daytime often amounted up to 30–50% of the OH-radical formation by ozone photolysis. Thus the importance of PAN as reservoir and transport medium for odd oxygen radicals can be very substantial and may have a significant impact on the budget and distribution of odd oxygen radicals.  相似文献   

3.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of OH and NO3 radicals with pinonaldehyde, caronaldehyde and sabinaketone at 296 ± 2 K. The OH radical reaction rate constants obtained are (in units of 10–12 cm3 molecule–1 s–1): pinonaldehyde, 48 ± 8; caronaldehyde, 48 ± 8; and sabinaketone, 5.1 ± 1.4, and the NO3 radical reaction rate constants are (in units of 10–14 cm3 molecule–1 s–1): pinonaldehyde, 2.0 ± 0.9; caronaldehyde, 2.5 ± 1.1; and sabinaketone, 0.036 ± 0.023, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. Upper limits to the O3 reaction rate constants were also obtained, of <2 × 10–20 cm3 molecule–1 s–1 for pinonaldehyde and caronaldehyde, and <5 × 10–20 cm3 molecule–1 s–1 for sabinaketone. These reaction rate constants are combined with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals and O3 to calculate tropospheric lifetimes and dominant transformation process(es) of these and other monoterpene reaction products.  相似文献   

4.
The 2.4-dinitrophenylhydrazine coated silica cartridge technique (DSC) was used for the measurements of HCHO and CH3CHO during the POPCORN campaign in August 1994. A total number of 505 measurements was carried out using an automatic sampling system. The sampling time for each measurement was 30 minutes. During the first two weeks of the campaign samples were taken every 3 hours and during the last two weeks every 30 minutes. No significant diurnal variation of HCHO and CH3CHO was observed. The average mixing ratios of HCHO and CH3CHO were 1.8 ±1.0 ppb and 1.4 ±1.3 ppb. The results for HCHO are in a good agreement with simultaneous measurements by differential optical absorption spectroscopy (DOAS). The absence of a strong diurnal variation of the HCHO mixing ratio can be explained by production and destruction processes during day and night. The measured mixing ratios of HCHO and CH3CHO, especially the mixing ratios during night, are a strong indication that during the POPCORN campaign the maize was a local source of HCHO and CH3CHO.  相似文献   

5.
The North China Plain (NCP) has recently faced serious air quality problems as a result of enhanced gas pollutant emissions due to the process of urbanization and rapid economic growth. To explore regional air pollu- tion in the NCP, measurements of surface ozone (O3), nitrogen oxides (NOx), and sulfur dioxide (SO2) were car- ried out from May to November 2013 at a rural site (Xianghe) between the twin megacities of Beijing and Tianjin. The highest hourly ozone average was close to 240 ppbv in May, followed by around 160 ppbv in June and July. High ozone episodes were more notable than in 2005 and were mainly associated with air parcels from the city cluster in the hinterland of the polluted NCP to the southwest of the site. For NOx, an important ozone precur- sor, the concentrations ranged from several ppbv to nearly 180 ppbv in the summer and over 400 ppbv in the fall. The occurrence of high NOx concentrations under calm condi- tions indicated that local emissions were dominant in Xianghe. The double-peak diurnal pattern found in NOx concentrations and NO/NOx ratios was probably shaped by local emissions, photochemical removal, and dilution re- sulting from diurnal variations of surface wind speed and the boundary layer height. A pronounced SO2 daytime peak was noted and attributed to downward mixing from an SO2-rich layer above, while the SO2-polluted air mass transported from possible emission sources, which differed between the non-heating (September and October) and heating (November) periods, was thought to be responsible for night-time high concentrations.  相似文献   

6.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

7.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

8.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   

9.
The intensive field study POPCORN (Photo-Oxidant Formation by Plant Emitted Compounds and OH Radicals in North-Eastern Germany) was carried out in a rural area of North-Eastern Germany during August 1994. An overview of the objectives, measurements and major results of this campaign is presented. Measurements of a set of relevant atmospheric trace compounds, including the hydroxyl radical, along with meteorological data were performed to increase the understanding of OH radical chemistry and photo-oxidant formation. Additionally, plant emissions and the exchange of trace gases between a maize field and the atmosphere were investigated. Budgets of selected trace gases were calculated to assess the relative importance of local sources, chemistry or transport. Intercomparisons between measurement techniques were a central issue of POPCORN and included measurements of OH, hydrocarbons, formaldehyde, photolysis frequencies and vertical fluxes. OH radical concentrations were measured simultaneously by LIF (Laser Induced Fluorescence) and DOAS (Differential Optical Absorption Spectroscopy). Both methods showed good agreement. Maximum OH concentrations were around 107 cm–3 and the diurnal cycles closely followed the rate of primary production via ozone photolysis. Generally, the trace gas composition during POPCORN was characterized by relatively low concentrations of most compounds, e.g. CO: 85–200 ppb, ethane: 0.6–2 ppb, and moderate NOx levels: 0.5–5 ppb (at noontime). Concentrations of individual biogenic volatile organic compounds (VOC) were mostly well below 100 ppt. However, formaldehyde and acetaldehyde which partly originate from biological sources were observed at mixing ratios of some ppb.  相似文献   

10.
热带深对流云对CO、NO、NOx和O3的垂直输送作用   总被引:2,自引:1,他引:1  
银燕  曲平  金莲姬 《大气科学》2010,34(5):925-936
利用2005年11月至2006年2月ACTIVE (Aerosol and Chemical Transport in tropIcal conVEction) 外场试验期间在澳大利亚北部达尔文地区取得的CO、O3、NO和NOx飞机探测资料, 并结合HYSPLIT后向轨迹模式结果, 分析这几种气体成分在对流卷云砧内外的分布情况, 并探讨热带深对流云对于污染气体的垂直输送作用。分析结果显示, 在孤立对流云卷云砧中, 云砧内部O3、NO、NOx浓度均大于云外; 而CO则不同, 只有在近地面浓度高时才如此, 在近地面浓度较小时, 卷云砧内部的浓度反而小于云外。进一步分析造成这两类气体分布差异的原因, 发现CO主要借助深对流云将对流层下层以及对流云周围环境中的CO夹卷并动力垂直输送到对流云顶部卷云砧中, 而对于O3、NO和NOx来说, 除了上述作用以外, 还可能与对流云内部其他物理机制(如闪电), 造成新的O3、NO和NOx有关, 这些新生气体随着风暴内部强烈的上升气流被最终输送进云砧中。  相似文献   

11.
南京北郊冬季大气SO2、NO2和O3的变化特征   总被引:1,自引:0,他引:1  
利用差分吸收光谱仪DOAS(differential optical absorption spectroscopy),对2007年11月—2008年1月南京北郊大气SO2、NO2和O3进行了观测。结合Parsivel降水粒子谱仪和自动气象站的资料,对冬季大气污染气体的浓度变化规律及降水和风速风向对其的影响进行了分析。结果表明,南京北郊大气SO2浓度较高,呈明显双峰特征,分别在12时(北京时,下同)和00时达最大,受附近排放源的影响最大,东风及南风时比静风时SO2浓度更高。降水对SO2湿清除效果明显,清除系数平均为0.168 h-1。NO2气体呈明显单峰特征,在18时达最高值。南京北郊是NO2源区之一,主要受附近高速公路汽车尾气排放源的影响。静风时NO2浓度最高。O3浓度受NO2的影响较明显。O3日变化呈单峰特征,在15时达最大值,静风时O3浓度最低。降水对O3的间接影响较明显,在降水时,白天由于太阳辐射较弱,O3浓度降低;夜晚NO浓度较低,使得O3浓度升高。  相似文献   

12.
The simultaneous measurements of NO, NO2 and HNOA mixing‐ratio profiles carried out on the Stratoprobe balloon flight of 22 July 1974 have been simulated with a time‐dependent model using the measured temperature and ozone profiles. The calculated ratios of NO/NO2, HNO3/NO2 using currently accepted photochemistry are consistent with the measured ratios within the experimental errors of the measurements. The measured NO2/NO ratio is almost a factor of two smaller than predicted, although the discrepancy is still within the experimental errors. A remarkable proportionality in the NO2 and O3 profiles has been noted and is unexplained. A time‐dependent simulation has been employed to convert the measurements into diurnally‐averaged profiles suitable for intercomparison with two‐dimensional stratospheric models and a comparison with constituent profiles from Prinn et al. (1975) is carried out as an example. The NOV mixing ratio, formed from the sum of the NO, NO2 and HNO2 measurements is similar to the NOV mixing ratio from several one‐ and two‐dimensional models used to predict the effects of SST's on the ozone layer. The odd nitrogen mixing ratio is roughly constant from 20 to 35 km at 11 ppbv.  相似文献   

13.
长江三角洲区域本底大气中致酸气体体积分数变化特征   总被引:1,自引:0,他引:1  
利用2003-12—2004-11浙江临安区域大气本底站大气NOx、SO2体积分数的连续观测资料,分析其季节变化和日变化特征。结果表明:长江三角洲区域本底大气中致酸气体NOx、SO2体积分数值均为冬季最高,分别为23.81×10^-9和37.3×10^-9,主要受来自东北方向宁、沪区域城市群的相对高浓度污染物随气团传输影响;夏季最低,主要是局地源的贡献。降水对SO2去除作用明显,对NOx去除效果不大。NOx体积分数值冬季的日变化最为明显,呈现出一低一高的双峰型,09:00出现较高体积分数值,18:00出现最高体积分数值;而夏季为单峰型日变化,07:00出现最高体积分数值。SO2冬、春季的日变化明显,最高体积分数值出现在06:00左右,最低体积分数值出现在15:00左右。该区域NO2全年空气质量达到《环境空气质量标准》(GB 30952—1996)一级标准,SO2冬、春季超标较多,受到人类活动影响较明显。NO2和SO2空气污染指数在12月最大,分别为50和93。该区域NO2和SO2并未出现“周末效应”。  相似文献   

14.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   

15.
Photochemical smog characterized by high concentrations of ozone (O3) is a serious air pollution issue in the North China Plain (NCP) region, especially in summer and autumn. For this study, measurements of O3, nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), nitrous acid (HONO), and a number of key physical parameters were taken at a suburban site, Xianghe, in the NCP region during the summer of 2018 in order to better understand the photochemical processes leading to O3 formation and find an optimal way to control O3 pollution. Here, the radical chemistry and O3 photochemical budget based on measurement data from 1-23 July using a chemical box model is investigated. The daytime (0600-1800 LST) average production rate of the primary radicals referred to as ROx (OH + HO2+ RO2) is 3.9 ppbv h-1. HONO photolysis is the largest primary ROx source (41%). Reaction of NO2 + OH is the largest contributor to radical termination (41%), followed by reactions of RO2 + NO2 (26%). The average diurnal maximum O3 production and loss rates are 32.9 ppbv h-1 and 4.3 ppbv h-1, respectively. Sensitivity tests without the HONO constraint lead to decreases in daytime average primary ROx production by 55% and O3 photochemical production by 42%, highlighting the importance of accurate HONO measurements when quantifying the ROx budget and O3 photochemical production. Considering heterogeneous reactions of trace gases and radicals on aerosols, aerosol uptake of HO2 contributes 11% to ROx sink, and the daytime average O3 photochemical production decreases by 14%. The O3-NOx-VOCs sensitivity shows that the O3 production at Xianghe during the investigation period is mainly controlled by VOCs.  相似文献   

16.
During the BERLIOZ field phase on 20 July 1998 a 40 km wide ozone-plume 30 to 70 km north of Berlin in the lee of the city was detected. The ozone mixing ratio inside the plume was app. 15 ppb higher than outside, mainly caused by high ozone precursor emissions in Berlin, resulting in a net chemical ozone production of 6.5 ppb h–1, which overcompensates ozone advection of –3.6 ppb h–1 andturbulent diffusion of –1.1 ppb h–1. That means, although moreozone leaves the control volume far in the lee of Berlin than enters it at the leeside cityborder and although turbulent diffusion causes a loss of ozone in the leeside control volume the chemical production inside the volume leads to a net ozone increase. Using a semi-Lagrangian mass budget method to estimate the net ozone production, 5.0 ppb h–1 are calculated for theplume. This means a fraction of about 20% of ozone in the plume is producedby local emissions, therefore called `home made' by the Berlin emissions. For the same area KAMM/DRAIS simulations using an observation based initialisation, results in a net production rate between 4.0 and 6.5 ppbh–1, while the threefold nested EURAD model gives 6.0 ppbh–1. The process analysis indicates in many cases goodagreement (10% or better) between measurements and simulations not only in the ozone concentrations but also with respect to the physical and chemical processes governing the total change. Remaining differences are caused by different resolution in time and space of the models and measurements as well as by errors in the emission calculation.The upwind-downwind differences in PAN concentrations are partly similar to those of ozone, because in the BERLIOZ case they are governed mainly by photochemical production. While in the stable boundary layer at night and windward of Berlin 0.1 to 0.3 ppb are detected, in the centre of the plume at noon concentrations between 0.75 ppb and 1.0 ppb are measured. The O3/PAN ratio is about 80 to 120 and thus due to the relatively lowPAN concentrations significantly higher than found in previous studies. The low PAN formation on 20 July, was mainly restricted by the moderate nonmethane hydrocarbon levels, whereas high PAN concentrations of 3.0 ppb on 21 July, are caused by local production in the boundary layer and by large scale advection aloft.  相似文献   

17.
The exchange of NO3 radicals with the aqueous-phase was investigated at room temperature (293 K) in a series of wetted denuders. From these experiments, the uptake coefficient of NO3 was determined on 0.1 M NaCl solutions and was found to be (NO3) 2 × 10-3 in good agreement with recent studies. The Henry coefficient of NO3 was estimated to be KH(NO3) = 1.8 M · atm-1, with a (2) uncertainty of ±3 M · atm-1. From the upper limit for the Henry coefficient (KH = 5 M · atm-1) and available thermodynamic data, the redox potential of dissolved NO3/NO 3 is estimated to be in the range of 2.3 to 2.5 V. This range is at the lower boundary of earlier estimates. The results are discussed in the light of a recent publication. Based on our data and a model of the transport and chemistry in the liquid film, an upper limit is derived for the product of the Henry coefficient KH and the rate coefficient k 10 of the potential reaction NO3 + H2O HNO3 + OH. For KH = 0.6 M · atm-1, we find k 10 < 0.05 s-1 · atm-1, i.e., about 100 times smaller than what was suggested by Rudich and co-workers. Because of its small solubility, heterogeneous removal of NO3 is only important under conditions where the dissolved NO3 is removed quickly from equilibrium, for example by reactions with Cl or HSO 3 ions in the liquid-phase. Otherwise, heterogenous removal should mainly proceed via N2O5.  相似文献   

18.
Continuous in-situ measurements of surface ozone (O3), carbon monoxide (CO) and oxides of nitrogen (NOx) were conducted at Udaipur city in India during April 2010 to March 2011. We have analyzed the data to investigate both diurnal and seasonal variations in the mixing ratios of trace gases. The diurnal distribution of O3 showed highest values in the afternoon hours and lower values from evening till early morning. The mixing ratios of CO and NOx showed a sharp peak in the morning hours but lowest in the afternoon hours. The daily mean data of O3, CO and NOx varied in the ranges of 5–51 ppbv, 145–795 ppbv and 3–25 ppbv, respectively. The mixing ratios of O3 were highest of 28 ppbv and lowest 19 ppbv during the pre-monsoon and monsoon seasons, respectively. While the mixing ratios of both CO and NOx showed highest and lowest values during the winter and monsoon seasons, respectively. The diurnal pattern of O3 is mainly controlled by the variations in photochemistry and planetary boundary layer (PBL) depth. On the other hand, the seasonality of O3, CO and NOx were governed by the long-range transport associated mainly with the summer and winter monsoon circulations over the Indian subcontinent. The back trajectory data indicate that the seasonal variations in trace gases were caused mainly by the shift in long-range transport pattern. In monsoon season, flow of marine air and negligible presence of biomass burning in India resulted in lowest O3, CO and NOx values. The mixing ratios of CO and NOx show tight correlations during winter and pre-monsoon seasons, while poor correlation in the monsoon season. The emission ratio of ?CO/?NOx showed large seasonal variability but values were lower than those measured over the Indo Gangetic Plains (IGP). The mixing ratios of CO and NOx decreased with the increase in wind speed, while O3 tended to increase with the wind speed. Effects of other meteorological parameters in the distributions of trace gases were also noticed.  相似文献   

19.
A study to explain the emission of nitric oxide from a marsh soil   总被引:1,自引:0,他引:1  
In the period 18–21 September 1989, soil NO emission was studied at Halvergate Marshes, Norfolk (U.K.) within the framework of the BIATEX-LOVENOX joint field experiment. Using a dynamic chamber technique, 186 measurements at four plots were performed showing a net NO flux of 7.2–14.6×10–12 kgN m–2 s–1. Soil samples from a soil profile (1.0 m) at a representative site and from the uppermost layer (0.1 m) of each of the four plots were sent to the laboratory for (a) detailed physical and chemical soil analysis, (b) determination of NO production rates, NO uptake rate constants, and NO compensation mixing ratios, and (c) characterization of the microbial processes involved. A diffusive model (Galbally and Johansson, 1989) was applied to the laboratory results to infer NO fluxes of the individual soil samples. When we compared these fluxes with those measured in the field, we found agreement within a factor 2–4. Furthermore, laboratory studies showed, that NO was produced and consumed only in the upper soil layer (0–0.1 m depth) and that the NO production and consumption activities observed in the Halvergate marsh soil were most probably due to the anaerobic metabolism of denitrifying bacteria operating in anaerobic microniches within the generally aerobic soil.  相似文献   

20.
Absolutely calibrated in-situ measurements of tropospheric hydroxyl radicals, formaldehyde, sulfur dioxide, and naphthalene (C10H8) were performed by long-path laser absorption spectroscopy during the field campaign POPCORN. The absorption light path was folded into an open optical multiple reflection cell with a mirror separation of 38.5 m. Using a light path length of 1848 m and an integration time of 200 s, the average 1-detection limits of OH, HCHO, SO2 and C10H8 during POPCORN were 8.7 · 105 cm–3, 8.3 · 109 cm–3, 2.4 · 109 cm–3, 1.5 · 108 cm–3, respectively. In total, 392 identifications of OH in air spectra were made in a rural environment between August 5 and August 23, 1994. We present and discuss OH absorption spectra and diurnal OH concentration profiles of three days which are representative for measurements under different pollution conditions during POPCORN. The observed maximum and median OH radical concentrations are 1.3 · 107 OH/cm3 and 4.0 · 106 OH/cm3, respectively. The measured diurnal variation of the OH concentration shows a good correlation with the primary formation reaction of OH radicals which is the photolysis of ambient ozone. Deviations from this correlation in the morning and evening hours, when the OH concentration is higher than expected from the ozone photolysis, demonstrate the importance of other photochemical HOx production pathways during POPCORN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号