首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A comparison is made of numerical and experimental results for flow over two-dimensional hills in both neutral and stably stratified flow. The numerical simulations are carried out using a range of one-and-a-half order and second-order closure schemes. The performance of the various turbulence schemes in predicting both the mean and turbulent quantities over the hill is assessed by comparing the results with new wind-tunnel measurements. The wind-tunnel experiments include both neutral and stably stratified flow over two different hills with different slopes, one of which is steep enough to induce flow separation. The dataset includes measurements of the mean and turbulent parts of the flow using laser Doppler anemometry. Pressure measurements are also made across the surface of the hill. These features make the dataset an excellent test of the model performance. In general second-order turbulence schemes provide the best agreement with the experimental data, however, they can be numerically unstable for steep hills. Some modifications can be made to the standard one-and-a-half order closure scheme, which results in improved performance at a fraction of the computation cost of the second-order schemes.  相似文献   

2.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

3.
Flow over Hills: A Large-Eddy Simulation of the Bolund Case   总被引:6,自引:6,他引:0  
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness properties.  相似文献   

4.
Numerical simulations of scalar transport in neutral flow over forested ridges are performed using both a 1.5-order mixing-length closure scheme and a large-eddy simulation. Such scalar transport (particularly of CO2) has been a significant motivation for dynamical studies of forest canopy–atmosphere interactions. Results from the 1.5-order mixing-length simulations show that hills for which there is significant mean flow into and out of the canopy are more efficient at transporting scalars from the canopy to the boundary layer above. For the case with a source in the canopy this leads to lower mean concentrations of tracer within the canopy, although they can be very large horizontal variations over the hill. These variations are closed linked to flow separation and recirculation in the canopy and can lead to maximum concentrations near the separation point that exceed those over flat ground. Simple scaling arguments building on the analytical model of Finnigan and Belcher (Q J Roy Meteorol Soc 130:1–29, 2004) successfully predict the variations in scalar concentration near the canopy top over a range of hills. Interestingly this analysis suggests that variations in the components of the turbulent transport term, rather than advection, give rise to the leading order variations in scalar concentration. The scaling arguments provide a quantitative measure of the role of advection, and suggest that for smaller/steeper hills and deeper/sparser canopies advection will be more important. This agrees well with results from the numerical simulations. A large-eddy simulation is used to support the results from the mixing-length closure model and to allow more detailed investigation of the turbulent transport of scalars within and above the canopy. Scalar concentration profiles are very similar in both models, despite the fact that there are significant differences in the turbulent transport, highlighted by the strong variations in the turbulent Schmidt number both in the vertical and across the hill in the large-eddy simulation that are not represented in the mixing-length model.  相似文献   

5.
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.  相似文献   

6.
The Bolund Experiment,Part II: Blind Comparison of Microscale Flow Models   总被引:3,自引:3,他引:0  
Bolund measurements were used for a blind comparison of microscale flow models. Fifty-seven models ranging from numerical to physical were used, including large-eddy simulation (LES) models, Reynolds-averaged Navier–Stokes (RANS) models, and linearized models, in addition to wind-tunnel and water-channel experiments. Many assumptions of linearized models were violated when simulating the flow around Bolund. As expected, these models showed large errors. Expectations were higher for LES models. However, of the submitted LES results, all had difficulties in applying the specified boundary conditions and all had large speed-up errors. In contrast, the physical models both managed to apply undisturbed ‘free wind’ boundary conditions and achieve good speed-up results. The most successful models were RANS with two-equation closures. These models gave the lowest errors with respect to speed-up and turbulent kinetic energy (TKE) prediction.  相似文献   

7.
A wind tunnel study of turbulent flow over model hills   总被引:1,自引:1,他引:1  
Detailed wind tunnel measurements have been made of mean flow and turbulence over a two-dimensional ridge and a circular hill, both having cosine-squared cross-section and maximum slope about 15 °. The measurements were made in an artificially thickened neutrally stratified boundary layer, and have been compared with results from linear models and rapid distortion theory as appropriate.Our study shows that linear theory gives generally good predictions of the mean flow on the upwind side of the hills, and especially of the flow speedup at the hill top, but that the turbulence is less well predicted. In particular, the measurements show a major increase in the vertical component of turbulence and in the shear stress on the upwind slope of both the two- and three-dimensional hills which is not predicted by either equilibrium or isotropic rapid-distortion theories, although this may be partly due to the effect of streamline curvature. Rapid-distortion theory is successful only in describing the streamwise component of turbulence in the outer region of the flow, while in the upper part of the inner region of the flow, the turbulence measurements show disagreement with both the equilibrium and the rapid-distortion theories. Our experiments also confirm that the equilibrium region is a very thin layer close to the surface, while above this region and below the outer region, there is a transitional region where all terms in the stress equation are important.The measurements over the three-dimensional hill suggest that the mean flow and turbulence are broadly similar to those over the two-dimensional ridge, but with reduced perturbation amplitudes. The major differences between the two cases are found on the upwind slope and in the wake where, respectively, horizontal divergence and convergence of the three-dimensional flow are most pronounced.  相似文献   

8.
The requirements for a credible large-eddy simulation of neutral, turbulent flow over hills with an aerodynamically rough surface are discussed, in order to select a suitable case for simulation. As well as providing adequate resolution within the dynamically important inner region, obtaining a realistic upstream or undisturbed mean velocity profile is also of critical importance. A distributed drag canopy formulation has been introduced to the model to allow it to obtain such a profile while resolving very close to the rough surface. Simulations have then been performed of flow over ridges of varying heights. The results from the steepest case, which is just on the verge of separation, are compared with wind-tunnel observations. It is shown that the large-eddy simulation results are in much better agreement with the experimental data than are the results from a simple first-order mixing-length closure model. An encouraging lack of sensitivity of the simulation results to numerical resolution is also demonstrated.  相似文献   

9.
A study of turbulent dispersion over hills for upstream, elevated sources was conducted, based on wind tunnel tracer gas (CO2) experiments over a gentle 2-D ridge and a 3-D circular hill, both having a cosine-square cross-section. The concentration measurements were made with four different source locations for each hill case (2-D or 3-D), and the study focused on dispersion parameters under the influence of the presence of the hills in order to provide a better understanding of the mechanisms involved.The wind tunnel measurements show that, in the case of gentle hills, the topographic impact on turbulent dispersion from upstream sources is only moderate and is more pronounced for the 3-D than for the 2-D hill. The perturbation in mean flow introduced by the hills, including streamline divergence/convergence, is shown to dominate the changes in the dispersion due to the hills in this case. The plume spread, both in the lateral and the vertical, is enhanced over the upwind hill foot and reduced over the hill top in response to the mean flow slow-down and speed-up at these places, and is further enhanced or reduced due to streamline divergence/convergence in the vertical over the hills as well as in the horizontal over the 3-D hill. These results are also compared with cases of turbulent dispersion over more steep hills (Snyder and Britter, 1987).  相似文献   

10.
Field observations of the influence of topography on steady, neutrally-stratified boundary-layer flow were carried out in February 1981 and March 1984 on Kettles Hill near Pincher Creek, Alberta, Canada. The primary measurements were of wind speed at 3,6, and 10 m levels at stations in linear arrays along and across the major axis of this gentle, 1 km long and 100 m high, elliptical hill. Wind profile measurements up to heights of 200 m were made with TALA kites and tethersondes on the hilltop and at a reference site located about 3.7 km west of the hilltop. In addition, AIRsondes were flown and tracked from the reference site to provide additional data. The field observations provided the basic data for a comparison with wind-tunnel and numerical model simulations of the same flow. The wind-tunnel investigation was carried out in the Atmospheric Environment Service Boundary-Layer Wind Tunnel while the numerical model used was MS3DJH. For horizontal profiles of normalized mean wind speed at given heights above the prototype terrain, model results agree reasonably well with the field data. The wind-tunnel predictions are slightly high in most cases. For vertical profiles of wind speed up to 200 m above the hilltop, the numerical and wind-tunnel values are higher than were observed. The sensitivity of the normalized wind speed at the hilltop to deviations from non-logarithmic upwind profiles is demonstrated with data from the March 1984 experiment. A comparison of prototype with numerical-model mean-wind-direction perturbations at the 10 m level shows reasonable agreement except near the summit of the hill.Contractor: 24 Heslop Drive, Toronto.  相似文献   

11.
Large-eddy and mixing length model simulations of convective flows over hills have been performed for a range of hill slopes and stabilities. For low hills, the fractional speed-up and normalized pressure drag are shown to decrease with increasing instability. For hills steep enough to cause separation in neutral conditions, the effect of convection is to reduce the size and strength of the separated bubble, although the normalized pressure drag is found to be almost independent of stability. Finally, the ability of effective roughness length parametrizations to represent the effects of the hills in convective conditions is assessed.  相似文献   

12.
We study turbulent flow over two-dimensional hills. The Reynolds stresses are represented by a second-order closure model, where advection, diffusion, production and dissipation processes are all accounted for. We solve a full set of primitive non-hydrostatic dynamic equations for mean flow quantities using a finite-difference numerical method. The model predictions for the mean velocity and Reynolds stresses are compared with the measured data from a wind-tunnel experiment that simulates the atmospheric boundary layer. The agreement is good. The performance of the second-order closure model is also compared withthat of lower level turbulence models, including the eddy-viscositymodel and algebraic Reynolds stress models. It is concluded that thepresent closure is a considerable improvement over the other modelsin representing various physical effects in flow over hills. Thefeasibility of running a finite-difference numerical simulationincorporating a full second-order closure model on an IBM workstationis also demonstrated.  相似文献   

13.
The onset of separation in neutral,turbulent flow over hills   总被引:3,自引:0,他引:3  
The onset of separation in turbulent, neutrally stratified, boundary-layer flow over hills is considered. Since the flows are fully turbulent, the occurrence of intermittent separation, in the sense of any reversal of near surface flow, will depend strongly on the detailed structure and behaviour of the turbulent eddies. Very little is known about such intermittent separation and the phenomenon cannot be studied with numerical models employing standard turbulence closures; eddy-resolving models are required. Therefore, here, as elsewhere in the literature, the arguably less physically significant process of mean flow separation is studied. Numerical simulations of flow over idealised two- and three-dimensional hills are examined in detail to determine the lowest slope, crit, for which the mean flow separates.Previous work has identified this critical slope as that required to produce a zero surface stress somewhere over the hill. This criterion, when a mixing-length turbulence closure is applied, reduces to requiring the near-surface vertical velocity shear to vanish at some point on the hill's surface. By applying results from a recent linear analysis for the flow perturbations to this condition, a new expression for crit is obtained. The expression is approximate but its relative simplicity makes it practically applicable without the need for use of a computer or for detailed mapping of the hill. The approach suggested differs from previous ones in that it applies linear results to a non-linear expression for the surface stress. In the past, a linear expression for the surface stress has been used. The proposed expression for crit leads to critical angles that are about twice previous predictions. It is shown that the present expression gives good agreement with the numerical results presented here, as well as with other numerical and experimental results. It is also consistent with atmospheric observations.  相似文献   

14.
The Askervein Hill Project: Wind-tunnel simulations at three length scales   总被引:1,自引:1,他引:1  
Wind-tunnel simulations of neutrally-stable atmospheric boundary-layer flow over an isolated, low hill (Askervein) have been carried out at three different length scales in two wind-tunnel facilities. The objectives of these simulations were to assess the reliability with which changes in mean wind and turbulence structure induced by the prototype hill on boundary-layer flow can be reproduced in the wind tunnel, and to determine the relative impact of certain modelling approaches (surface roughness, model scale, measurement techniques, etc.) on the quality of the simulations. The wind-tunnel results are compared with each other and with full-scale data and are shown in general to model the prototype flow very well. The effects of relaxing the criterion of aerodynamic roughness of the model surface were limited to certain regions in the lee of the hill and were linked to separation phenomena.  相似文献   

15.
A wind tunnel study of turbulent flow over a two-dimensional ridge   总被引:1,自引:0,他引:1  
We present a wind-tunnel simulation of adiabatic atmospheric flow normal to a rough, two-dimensional ridge. The data are analyzed in physical streamline coordinates, which are described in some detail. The mean velocity speed-up on the hill top is adequately predicted by existing formulae while the behaviour of the wake flow fits into a pattern that emerges from other wind-tunnel experiments. The turbulent stresses evolve in response to the extra strain rates induced by the hill, streamline curvature and acceleration: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaWbaaS% qabeaaceaIYaGbaebaaaaaaa!3456!\[u^{\bar 2}\]is coupled strongly to acceleration while % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaaiaadw% hacaWG3baaaaaa!3462!\[\overline {uw}\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaWbaaS% qabeaaceaIYaGbaebaaaaaaa!3458!\[w^{\bar 2}\]follow curvature. These differing responses lead to significant phase differences between the changes in the component stresses as the hill is traversed. An analogous response is seen in the components of turbulent stress divergence, which are computed as part of streamwise momentum budgets. Only very close to the surface is turbulent stress divergence comparable to the inertial and pressure terms in the momentum budget; over most of the flow regime, the mean flow response is approximately inviscid. Finally, we compare our results with data from other wind tunnel models and from real hills.  相似文献   

16.
We carry out model studies of turbulence quantities for flow over two-dimensional hills using a non-hydrostatic version of the Regional Atmospheric Modeling System (RAMS). We test two turbulence closure models: the first one is an explicit Algebraic Reynolds Stress Model (ARSM) and the second one is a combination of the ARSM and a transport equation for the shear stress {ovuw}. Model predictions for the turbulent stresses are compared with data from a wind-tunnel experiment containing isolated two-dimensional hills of varying slope. From the comparison, it is concluded that the first model can only predict the normal stresses adequately while the second model provides satisfactory predictions for the normal stresses as well as giving an improved result for the shear stress {ovuw}.  相似文献   

17.
The wake characteristics of a wind turbine in a turbulent atmospheric boundary layer under different thermal stratifications are investigated by means of large-eddy simulation with the geophysical flow solver EULAG. The turbulent inflow is based on a method that imposes the spectral energy distribution of a neutral boundary-layer precursor simulation, the turbulence-preserving method. This method is extended herein to make it applicable for different thermal stratification regimes (convective, stable, neutral) by including suitable turbulence assumptions, which are deduced from velocity fields of a diurnal-cycle precursor simulation. The wind-turbine-wake characteristics derived from simulations that include the parametrization result in good agreement with diurnal-cycle-driven wind-turbine simulations. Furthermore, different levels of accuracy are tested in the parametrization assumptions, representing the thermal stratification. These range from three-dimensional matrices of the precursor-simulation wind field to individual values. The resulting wake characteristics are similar, even for the simplest parametrization set-up, making the diurnal-cycle precursor simulation non-essential for the wind-turbine simulations. Therefore, the proposed parametrization results in a computationally fast, simple, and efficient tool for analyzing the effects of different thermal stratifications on wind-turbine wakes by means of large-eddy simulation.  相似文献   

18.
A numerical model of two-dimensional surface boundary-layer flow based on a non orthogonal coordinate mapping is developed. Results show good agreement with previous computations using conformal mapping techniques for flow over a periodic wavy surface and over an isolated hill. Results are presented for flow over Gaussian hills and valleys and over smooth sloping escarpments. For a 1 in 4 Sine ramp, good agreement is obtained with Freeston's (1974) wind-tunnel measurements.Presented under the title Atmospheric boundary-layer flow above gentle topography at the 10th Annual Congress of the Canadian Meteorological Society, Quebec City, May 26–28, 1976.  相似文献   

19.
A three-dimensional nonlinear numerical model, that has been extensively used previously to predict environmental water flows, was applied to predict the flow over an isolated hill, Askervein. Predictions are reported for winds approaching the hill from 210 ° and 180 ° clockwise from north, both under almost neutral atmospheric conditions.The model predictions were compared with data collected during a major field study in 1983. From the comparisons it was concluded that the model predicts the mean flow variables with good accuracy. Larger discrepancies were found for quantities related to the turbulence, pointing to deficiencies in the turbulence model, and perhaps in some of the measurements.  相似文献   

20.
The nonlinear version of the mixed spectral finite difference model of atmospheric boundary-layer flow over topography is reviewed. The relations between the stability of the iteration scheme and its relaxation parameter are discussed. Suitable choice of the relaxation factor improves the computational stability on terrain with maximum slope up to 0.5 or 0.6 in certain circumstances. Examples of relatively high slope terrain are used to test the stability. A two-dimensional version of the model is considered. More detailed simulations are studied and analyzed for a comparison with wind-tunnel flow over periodic sinusoidal surfaces. An application on real topography is given for Bolund hill in Roskilde, Denmark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号