首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

2.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   

3.
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed ‘flushing’, that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.  相似文献   

4.
MM5模式中城市冠层参数化方案的设计及其数值试验   总被引:15,自引:5,他引:15  
文中在综合国外一些较先进的中尺度模式城市作用参数化方案的基础上 ,从城市下垫面结构对城市边界层大气作用的物理机制及实际应用两方面出发 ,对城市下垫面结构和人为活动等因素对边界层结构的影响及中尺度模式中城市化作用的合理体现等问题进行了较全面的考虑 ,改进和设计出能够较全面、细致地描述城市结构对大气边界层动力、热力结构的影响 ,且适合中尺度模式结构特点的城市冠层参数化方案 (UCP) ,并实现了其与MM5模式的耦合。进行了耦合后的UCP方案及采用原城市作用方案的MM5模式对BECAPEX试验期间北京地区气象条件多重嵌套细尺度进行了模拟试验 ,并与观测结果对比 ,结果表明 :相比于MM 5模式中原有表示城市作用的参数化方案来讲 ,设计的UCP方案在很大程度上提高了MM 5模式对城市边界层热力和动力结构的模拟能力。  相似文献   

5.
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.  相似文献   

6.
建立了一个农林复合带地区一维非静力大气边界层能量闭合模式,对1000m以下的大气边界层内的风、温、湿作了24h的预报,并对下垫面3种不同参数化方案(农作物、森林、无植被)的输出结果与实测值进行了分析和比较;同时通过敏感性试验,突出比较了农作物和森林下垫面对大气边界层垂直流场,湍流垂直交换和湍能的影响。结果表明,本模式能改善边界层风速、位温和湿度预报的模拟效果,下垫面植被对边界层气象要素大小和分布有显著的作用,对湍能垂直分布有一定影响。  相似文献   

7.
边界层参数化方案对陆气相互作用影响的模拟研究   总被引:3,自引:3,他引:0  
利用湍流动能闭合方法对区域气候模式RegCM3中的边界层参数化方案进行了改进,然后利用中国东部典型旱、涝年资料进行了改进效果对比试验,并着重分析了边界层参数化方案改进对陆气相互作用的影响,结果表明:采用湍流动能闭合方法可以更合理的描述边界层的高度及其日变化,较为真实地描述边界层的物理过程,使得陆—气间通量及大气各层垂直...  相似文献   

8.
利用WRF模式结合不同的边界层参数化方案,对2007年7月3—5日发生在江淮流域的一次梅雨锋暴雨过程进行多组数值模拟试验。结果发现,边界层方案的选取对于降水的落区和强度模拟会产生较显著的影响;在降水率及地面要素的模拟上,各方案在降水中后期的模拟差异明显大于降水发生阶段;不同边界层方案的选取对于降水时段内的水平风场、垂直运动和假相当位温的垂直分布都产生影响,直接影响降水时空分布的模拟;不同方案都模拟出了在降水发生之后不同于晴空日变化的湍流动能垂直分布,经分析发现与局地较强的垂直风切变和近地面强湍流气团被抬升有关,而浮力项起着耗散作用;各方案的湍流交换特征与湍流动能特征基本吻合,相比于其他方案,MYJ方案在降水区域的湍流动能及湍流交换强度明显偏弱,对热通量的输送也偏弱;GBM方案在边界层内的湍流混合偏弱而在边界层以上湍流混合显著偏强,热通量输送在边界层以上的高度上误差明显,影响了对降水区域气象要素的模拟能力,仍需要进一步改进。   相似文献   

9.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

10.
Summary The dynamical effect of land surface heterogeneity on heat fluxes in the atmospheric boundary layer (ABL) is investigated using numerical simulations with a non-hydrostatic model over a wide range of grid resolutions. It is commonly assumed that mesoscale or dynamical fluxes associated with mesoscale and convective circulations simulated by a high-resolution model (subgrid (SG) model) on the subgrid scale of a climate model (large-scale (LS) model) represent additional processes in the ABL, which are not considered by the turbulence scheme of the LS-model, and which can be parameterized using the SG-model. The present study investigates the usefulness of this methodology for small-scale and large-scale idealized heterogeneities using a SG-model resolving mesoscale or even microscale circulations to compute the mesoscale fluxes on the scale of the LS-model. It is shown that the dynamical transports as derived from the SG-model should not be used to correct the parameterized turbulent fluxes of the LS-model. The reason is that the subgrid circulations simulated by the SG-model interact with the fields of wind and scalars in the ABL, which results in reduced turbulent fluxes in the ABL. Thus the methodology of previous studies to use mesoscale/dynamical fluxes for the correction of flux profiles simulated by climate models seems to be questionable.  相似文献   

11.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

12.
Measurements and Computations of Flow in an Urban Street System   总被引:1,自引:1,他引:0  
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.  相似文献   

13.
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin–Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.  相似文献   

14.
A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer, especially over heterogeneous terrain. In the present study, turbulence intensity and turbulent kinetic energy (TKE) parameters are analyzed for different conditions with respect to stability, wind direction and wind speed over a valley region of the Loess Plateau of China during December 2003 and January 2004. The purpose of the study is to examine whether the observed turbulence intensity and TKE parameters satisfy Monin-Obukhov similarity theory (MOST), and analyze the wind shear effect on, and thermal buoyancy function of, the TKE, despite the terrain heterogeneity. The results demonstrate that the normalized intensity of turbulence follows MOST for all stability in the horizontal and vertical directions, as well as the normalized TKE in the horizontal direction. The shear effect of the wind speed in the Loess Plateau region is strong in winter and could enhance turbulence for all stability conditions. During daytime, the buoyancy and shear effect together constitute the generation of TKE under unstable conditions. At night, the contribution of buoyancy to TKE is relatively small, and mechanical shearing is the main production form of turbulence.  相似文献   

15.
王蓉  黄倩  岳平  王敏仲 《气象》2019,45(12):1700-1709
基于敦煌野外观测资料和大涡模式,研究了垂直方向不同尺度湍涡对夹卷及示踪物垂直传输的影响,明确了模式垂直分辨率在模拟结果分析中的作用。结果表明:垂直方向上小尺度湍涡对夹卷作用贡献更大,小尺度湍涡较多时夹卷层相对更暖,而夹卷层厚度、夹卷强度和风速变化受垂直方向湍涡尺度影响较小。当垂直分辨率为50 m时,越往夹卷层上部,上升气流和下沉气流分布较多且强度较大;分辨率为10、20和30 m时,夹卷层各高度垂直速度、位温和示踪物浓度分布较接近。另外,垂直方向湍涡尺度对示踪物垂直传输高度影响不大,而对示踪物的空间分布有一定作用。当大尺度湍涡较多且强度较强时,越有利于将高浓度的示踪物向上传输。综合考虑到模式采用较高分辨率模拟时产生的噪音及计算时间等问题,认为模式采用30 m的垂直分辨率,既能较好地模拟出夹卷层平均结构特征,又能模拟出夹卷层湍流的精细分布,是较为理想的选择。  相似文献   

16.
Edge Flow and Canopy Structure: A Large-Eddy Simulation Study   总被引:4,自引:4,他引:0  
Sharp heterogeneities in forest structure, such as edges, are often responsible for wind damage. In order to better understand the behaviour of turbulent flow through canopy edges, large-eddy simulations (LES) have been performed at very fine scale (2 m) within and above heterogeneous vegetation canopies. A modified version of the Advanced Regional Prediction System (ARPS), previously validated in homogeneous conditions against field and wind-tunnel measurements, has been used for this purpose. Here it is validated in a simple forest-clearing-forest configuration. The model is shown to be able to reproduce accurately the main features observed in turbulent edge flow, especially the “enhanced gust zone” (EGZ) present around the canopy top at a few canopy heights downwind from the edge, and the turbulent region that develops further downstream. The EGZ is characterized by a peak in streamwise velocity skewness, which reflects the presence of intense intermittent wind gusts. A sensitivity study of the edge flow to the forest morphology shows that with increasing canopy density the flow adjusts faster and turbulent features such as the EGZ become more marked. When the canopy is characterized by a sparse trunk space the length of the adjustment region increases significantly due to the formation of a sub-canopy wind jet from the leading edge. It is shown that the position and magnitude of the EGZ are related to the mean upward motion formed around canopy top behind the leading edge, caused by the deceleration in the sub-canopy. Indeed, this mean upward motion advects low turbulence levels from the bottom of the canopy; this emphasises the passage of sudden strong wind gusts from the clearing, thereby increasing the skewness in streamwise velocity as compared with locations further downstream where ambient turbulence is stronger.  相似文献   

17.
湍流动能闭合方法在区域气候模式中的应用   总被引:13,自引:4,他引:9  
利用湍流动能闭合方法改进了区域气候模式(RegCM2)中边界层的参数化过程,并用资料进行了数值试验。结果表明.采用该方法可以较好地描述边界层的物理过程,温度、位势高度、比湿等物理量场的模拟均有不同程度的改善,提高了边界层计算的精度。该工作还对模式中边界层高度的计算作了改进,使边界层高度的日变化及高度极值都更符合实际情况。  相似文献   

18.
The Near-Calm Stable Boundary Layer   总被引:3,自引:3,他引:0  
For the near-calm stable boundary layer, nominally 2-m mean wind speed <0.5 ms−1, the time-average turbulent flux is dominated by infrequent mixing events. These events are related to accelerations associated with wave-like motions and other more complex small-scale motions. In this regime, the relationship between the fluxes and the weak mean flow breaks down. Such near-calm conditions are common at some sites. For very weak winds and strong stratification, the characteristics of the fluctuating quantities change slowly with increasing scale and the separation between the turbulence and non-turbulent motions can become ambiguous. Therefore, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy. In contrast to more developed turbulence, correlations between fluctuating quantities are small, and a significant heat flux is sometimes carried by very weak vertical motions with large temperature fluctuations. The relation of the flux events to small-scale increases of wind speed is examined. Large remaining uncertainties are noted.  相似文献   

19.
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (\({>}1\) m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy–atmosphere exchanges in forest-edge regions.  相似文献   

20.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号