首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The adsorption of three cationic dyes (rhodamine B, RB; crystal violet, CV; and malachite green, MG) onto termite feces, a low‐cost adsorbent, was investigated. The adsorbent was characterized by IR spectroscopy, point of zero charge measurement, and the Boehm titration method. The adsorption follows the pseudo‐second‐order kinetic model and the Langmuir–Freundlich isotherm with maximum adsorption capacities of 95.53 mg g?1 (RB), 75.71 mg g?1 (CV), and 44.78 mg g?1 (MG). The study of thermodynamics showed that the adsorption is a spontaneous and endothermic process. This works suggest that termite feces can be used as a new low‐cost adsorbent for cationic dye removal.  相似文献   

2.
A magnetic‐sulfonic graphene nanocomposite (G‐SO3H/Fe3O4) was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. It was used for removal of three cationic dyes: safranine T (ST), neutral red (NR), victoria blue (VB), and three anionic dyes: methyl orange, brilliant yellow, and alizarin red, from environmental water. The experimental conditions were optimized, including pH, amount of adsorbent, adsorption kinetics, adsorption isotherms, ionic strength, etc. The results show that G‐SO3H/Fe3O4 can adsorb cationic dyes more efficiently and selectively than anionic dyes at pH 6.0. In the first 10 min of adsorption time, more than 93% of the cationic dyes were removed by the sorbent. Adsorption kinetics follow the pseudo‐second‐order kinetic model well. The adsorption isotherm coincided with Langmuir and Freundlich adsorption models. The maximum adsorption capacities of G‐SO3H/Fe3O4 for ST, NR, and VB dyes were 199.3, 216.8, and 200.6 mg g?1. The adsorbed cationic dyes were eluted by using different pH values of ethanol as the solvent. The established method was simple, sensitive, and rapid, and was suitable for the adsorption of cationic dyes in environmental water.  相似文献   

3.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

4.
This study evaluates the performance of two low cost and high performance adsorption materials, i.e., activated carbon produced from two natural waste products: Bamboo and coconut shell, in the removal of three pesticides from drinking water sources. Due to the fact that bamboo and coconut shell are abundant and inexpensive materials in many parts of the world, they respond to the “low‐cost” aspect. The adsorption capacities of two local adsorbents have been compared with commercial activated carbon to explore their potential to respond to the “high quality” aspect. Two pesticides were selected, namely dieldrin and chlorpyrifos, because they are commonly used in agriculture activities, and may remain in high concentrations in surface water used as drinking water sources. The results indicate that the adsorption of pesticides on activated carbons is influenced by physico‐chemical properties of the activated carbon and the pesticides such as the presence of an aromatic ring, and their molar mass. The activated carbon produced from bamboo can be employed as low‐cost and high performance adsorbent, alternative to commercial activated carbon for the removal of pesticides during drinking water production. The performance of activated carbon from bamboo was better due to its relatively large macroporosity and planar surface. The effect of adsorbent and pesticide characteristics on the performance was derived from batch experiments in which the adsorption behavior was studied on the basis of Freundlich isotherms.  相似文献   

5.
We have studied bacterial abundance and production in samples from sediment traps deployed for 1 and 100 days in several areas of the shelf and slope regions of the Middle Atlantic Bight, U.S.A. By making a series of assumptions about bacterial growth at the expense of POC in traps, we have estimated that the turnover time of organic particles collected in traps during long deployments is slow (mean 1500 ± 300 days), if only bacterial activity is considered. However the abundance and biomass of bacteria in traps is very high, ranging from 3 to 30 × 1011 cells gC?1, i.e., 0.3 to 3% of the POC is bacterial carbon. Fifteen to 88% of the particles in traps were colonized by bacteria, but usually about half the particles had only 0 to 1 cell attached. Growth of bacteria was observed at all scales relevant to these trap deployments; over periods ranging from hours to weeks, at rates of 0.01 to 0.3 d?1. In spite of slow growth, bacteria appeared to be physiologically active in that [3H]adenine and [3H]thymidine were incorporated more rapidly into RNA and protein than into DNA. Total incorporation rates were high. We conclude that even relatively old (ca. 1 y) POC in sediment traps supports high levels of active bacterial biomass, but that POC decomposition is slow, so that bacteria may not be the principal agents of POC turnover following collection.  相似文献   

6.
In the present study, Oreganum onites L. stalks in natural and chemically modified with HNO3 and H3PO4 used as adsorbent for removal of both acidic and basic dyes from waters. The adsorption was studied as a function of pH and contact time by batch method. All tested biosorbents were characterized by FT‐IR, scanning electron microscopy, and measuring the pH dependence of the zeta potential. The adsorption isotherms were fitted to Langmuir isotherm. The maximum adsorption capacity of dyes was 280.73 mg g?1 for Basic Red 18, 147.06 mg g?1 for methylene blue and 112.36 for Acid Red 111, which is comparable to that of other lignocellulosic materials. The modification process was considerably increased the biosorption capacity of lignocellulosic material, resulting in a 56–63% increase in the biosorption capacity of basic dyes and a 125% increase in the biosorption capacity of acidic dye. The present study illustrated that the most effective factors in the adsorption of basic dye were surface charge and acidic groups on lignocellulosic biosorbents, while non‐electrostatic forces as well as electrostatic forces were also effective in the adsorption of acidic dye. In conclusion, Oreganum stalks can be considered as a very prospective adsorbent for the removal of tested basic and acidic dyes.  相似文献   

7.
8.
A macroporous, hydrophobically modified poly(acrylic acid‐acrylamide) hydrogel was prepared. The fourier transform infrared (FTIR) spectrum and field emission scanning electron microscopy (FE‐SEM) results showed that the hydrogel had a macroporous structure. The dynamic swelling and removal of cationic dyes, crystal violet (CV) and basic magenta (BM), by this macroporous hydrophobically modified poly(acrylic acid‐acrylamide) hydrogel were studied. The adsorption capacity and kinetic and isotherm studies of the cationic dyes into the hydrogels have been evaluated. It was found that the macroporous hydrophobically modified hydrogel (M) exhibited improved swelling and adsorption capacity compared with the non‐macroporous hydrophobically modified hydrogel (NM). The adsorption process agreed very well with the Langmuir model and the adsorption of the cationic dyes depended on the pH of the solution via a mechanism combining swelling, electrostatic, and hydrophobic interactions. Moreover, adsorption kinetic studies showed that the adsorption followed a pseudo‐second‐order kinetic model, indicating that chemical adsorption was the rate‐limiting step.  相似文献   

9.
This study investigates structural and adsorption properties of the powdered waste shells of Rapana gastropod and their use as a new cheap adsorbent to remove reactive dye Brilliant Red HE‐3B from aqueous solutions under batch conditions. For the powder shells characterization, solubility tests in acidic solutions and X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform IR spectroscopy (FT‐IR) and thermogravimetric analyses were performed. The results revealed that the adsorbent surface is heterogeneous consisting mainly from calcium carbonate layers (either calcite or aragonite) and a small amount of organic macromolecules (proteins and polysaccharides). The dye adsorptive potential of gastropod shells powder was evaluated as function of initial solution pH (1–5), adsorbent dose (6–40 g L?1), dye concentration (50–300 mg L?1), temperature (5–60°C), and contact time (0–24 h). It was observed that the maximum values of dye percentage removal were obtained at the initial pH of solution 1.2, shells dose of 40 g L?1, dye initial concentration of 50–50 mg L?1 and higher temperatures; the equilibrium time decreases with increasing of dye concentration. It is proved that the waste seashell powder can be used as low cost bioinorganic adsorbent for dyes removal from textile wastewaters.  相似文献   

10.
By‐products of various industrial fermentations can be good adsorbents for removing hazardous dyes from wastewater. However, after biosorption, regeneration of biomass is essential to minimize the solid waste generation or else the dye laden biomass should be suitably disposed off. In the present work, experiments were conducted on the Acid Navy Blue and Methylene Blue dyes which were biosorbed to the fungal biomass (strain closely related to Aspergillus lentulus) produced on corncob as the substrate through solid state fermentation. In order to dispose the dye laden biomass, it was vermicomposted along with cow dung (CD) employing Eisenia fetida. Results indicated that the dye laden biomass was not lethal toward the earthworms as no mortality was observed. However, as compared with control experiments (where dye laden biomass was absent), the reproductive potential of the earthworms was affected. Nevertheless, further investigations on optimization of biomass and CD ratios can facilitate vermicomposting as a potential route for disposing dye laden biomass.  相似文献   

11.
Of recent, adsorption process has gained a lot of attention as a cheap and effective means of removing trace metals from wastewater prior to discharge into water bodies. Being flexible in design and operation, the process has enabled an optimal recovery of trace metals such that the treated effluents meet the desired standards for waste disposal. Mercury is a toxicant released into the environment from natural and anthropogenic sources. It is notorious for having an unusual tendency to bio‐accumulate and persist in the food chain. Presence of mercury in food, especially those of aquatic sources has drastic implications on human health. Therefore, efforts have been made to develop and optimize low‐cost activated carbon (AC) as adsorbents for scavenging mercury from aqueous effluents. Herein, how mercury accumulates across the food chain, its health implications, and the recent advancement in the use of low‐cost ACs as adsorbent for trapping mercury from wastewater are highlighted. Relationship between the mercury removal efficiency and the surface morphology of the adsorbents as well as the influence of prevailing experimental condition on the sorption process were addressed. Challenges and future prospects of the use of low‐cost adsorbents in addressing mercury pollution in the environment are discussed.  相似文献   

12.
A new approach to numerical simulation of source development of earthquake   总被引:5,自引:0,他引:5  
AnewapproachtonumericalsimulationofsourcedevelopmentofearthquakeCHUN-ANTANG(唐春安)YU-FANGFU(傅宇方)WENZHAO(赵文)CenterforRockbursts...  相似文献   

13.
The potential of MCM‐41 for the removal of cationic dyes from water solution was evaluated using sodium dodecyl sulfate (SDS) for the surface modification of this mesoporous material. Admicelle structures formed on the surface of the calcined MCM‐41 are capable of removing organic pollutants and cationic species from water environment. The structural, textural, and surface chemical characteristics of the prepared SDS‐modified MCM‐41 (SDS‐MCM‐41) were studied. The adsorption capacity of SDS‐MCM‐41 was evaluated for methylene blue (MB) as a target cationic dye. Equilibrium adsorption isotherm data were manipulated employing nonlinear regression analysis. The Langmuir, Freundlich, and Sips isotherm models were examined. The adsorption data were well fitted to both Langmuir and Sips isotherm models. The maximum adsorption capacity of SDS‐MCM‐41 for MB, based on Langmuir and Sips models, were 290.8 and 297.3 mg g?1, respectively. Ethanol was found to be an effective solvent for partial regeneration of the adsorbent.  相似文献   

14.
The purpose of this work is the removal of basic dyes (Safranine T and Brilliant Green) from aqueous media by depolymerization products (DP) obtained from aminoglycolysis of waste poly(ethylene terephthalate) (PET). The surface morphology and physical properties of depolymerization product were also determined. Adsorption behaviors (adsorption capacities, adsorption kinetics and adsorption isotherms) of these samples were realized at room temperature. Then, the amounts of residual dye concentrations were measured using Visible Spectrophotometer at 530 and 618 nm for Safranine T (ST) and Brilliant Green (BG), respectively. All adsorption experiments were carried out for different depolymerization products (DP1, DP2, DP3, and DP4). Adsorption capacities of depolymerization products for both of dyes decrease with following order: DP2 > DP4 > DP1 > DP3. The maximum adsorption capacities for ST and BG onto DP2 sample were found to be 29 and 33 mg g?1, respectively. In addition, the adsorption kinetic results show that the pseudo‐second‐order kinetic model is more suitable than pseudo‐first‐order model for the adsorption of basic dyes onto DP samples. Adsorption data were evaluated using Langmuir and Freundlich adsorption isotherm models. The results revealed that the adsorption of basic dyes onto DP sample fit very well Langmuir isotherm model. In conclusion, the depolymerization products of post‐consumer PET bottles can be used as low cost adsorbent for the removal of basic dyes from wastewaters.  相似文献   

15.
A comparative study of the petro-chemistry of the tholeiitic rocks (Cuddapah, Gwalior, Rajmahal and the Deccan traps) is made employing various crystallization parameters such as the differentiation index (D. I.) and the solidification index (S. I.). The D. I. values of the upper Deccan traps are much higher than those of the lower traps, rocks of intermediate composition being rare. The S. I. values of the Deccan traps allow them to be classified into three categories i.e., (1) the lower trap with higher S. I. values, (2) the differentiated upper division traps, (3) the unusual rock types of Western India. Murata’s alkali-silica diagram, based on all the available analyses of the traps (Pre-Cambrian to Eocene), indicates that, following the chemical definition, it is not possible to group the entire upper Deccan trap flows under the tholeiites. All the Precambrian traps are not tholeiitic either. There is a clear relationship between optical and petro-chemical characters. Attention is drawn to the difficulties in the application of Barth’s «f-norm » to trace the cooling history of the rocks crystallizing at a later stage.  相似文献   

16.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water.  相似文献   

17.
In the present study, the removal of Cu(II) was evaluated by raw and calcined phosphogypsum (PG) as an industrial product. The role of experimental factors on the removal of Cu(II) was examined by using D‐optimal and Taguchi designs. The experimental factors and their related levels were selected as initial pH of 3–6–8, adsorbent content of 5, 10, and 25 g L?1, contact time of 5, 10, and 20 min, and temperature of 20, 40, and 60°C. The results are evaluated by ANOVA test to extract important experimental factors and their levels. The performances of the suggested factorial designs were then compared and regression models that took into account the significant main and interaction effects were suggested. Taguchi design was found as a reliable solution with less number of experiments for adsorption studies with the optimized values. The resultant removal efficiency is calculated as 78.34%. The results revealed that calcined PG is an appropriate adsorbent for Cu(II) removal from leachate of industrial waste.  相似文献   

18.
Zinc remediation of aqueous streams is of special concern due to its highly toxic and persistent nature. Conventional treatment technologies for the removal of zinc are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal of metal ions from aqueous solutions. Mechanisms involved in the biosorption process include chemisorption, complexation, adsorption–complexation on surface and pores, ion exchange, microprecipitation, heavy metal hydroxide condensation onto the bio surface, and surface adsorption. Biosorption largely depends on parameters such as pH, the initial metal ion concentration, biomass concentration, presence of various competitive metal ions in solution, and to a limited extent on temperature. Biosorption using biomass such as agricultural wastes, industrial residues, municipal solid waste, biosolids, food processing waste, aquatic plants, animal wastes, etc., is regarded as a cost‐effective technique for the treatment of high volume and low concentration complex wastewaters containing zinc metal. Very few reviews are available where readers can get an overview of the sorption capacities of agro based biomasses used for zinc remediation together with the traditional remediation methods. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agro based biomasses for zinc metal ions removal. An extensive table summarizes the sorption capacities of various adsorbents. These biosorbents can be modified using various methods for better efficiency and multiple reuses to enhance their applicability at industrial scale. We have incorporated most of the valuable available literature on zinc removal from waste water using agro based biomasses in this review.  相似文献   

19.
Biomass char (BC) deriving from fast pyrolysis of biomass was a potential adsorption material due to its relative high fixed‐carbon content and the inherent porous structures. Adsorption of phosphate from aqueous solution by BC was investigated in this paper. The results showed that the adsorption capacity of BC was dependent on pyrolysis conditions, such as temperature and holding time. The maximum adsorption capacity for phosphate was approximately 15.11 mg g?1 at 298 K. The pseudo‐second order model of the adsorption kinetics indicated that the adsorption process was complex and several mechanisms were involved. Equilibrium isotherm was satisfactorily followed the Freundlich isotherm model. The KF value in Freundlich equation gradually increased with elevating temperature. Moreover, the thermodynamic constants: ΔG0, ΔH0, and ΔS0 were evaluated as ?6.49 kJ mol?1 (at 298 K), 13.41 kJ mol?1, and 66.70 J mol?1 K?1, respectively. Phosphate adsorption onto BC was spontaneous and endothermic. As a waste, BC was a potentially attractive adsorbent for phosphate removal from aqueous solution with low cost and high capability.  相似文献   

20.
A laboratory study was carried out to investigate the influence of the biomass content in the sediment on the rate of diagenesis of particulate organic materials (POM) and the consequent sediment oxygen demand (SOD) and nutrient fluxes. Fish food pellets were loaded into the sediment to simulate a sudden POM input. Three types of sediments with different biomass contents were tested, including a raw marine sediment, the marine sediment after one month of cultivation and an artificial sediment of sand and clay without any biomass. There was little difference in organic flux from the three different sediments. However, compared to the artificial sediment, the marine sediments had much higher SOD and ammonia flux. A mathematical model also has been developed for the SOD dynamics and nutrient fluxes. Both the experimental and simulation results indicate the important role of the biomass in the sediment in POM diagenesis, SOD and nutrient fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号