首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4?C6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5?±?1.3?×?10?C8 cm2?s?C1 at 21°C, compared to previously published diffusion coefficients of 1.2?×?10?C18 cm2?s?C1 (21°C) to 3.0?×?10?C15 cm2?s?C1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (??3%) and tortuosity (??6?C13) produces effective diffusion coefficients of 1?×?10?C8 cm2?s?C1 (21°C) and 1?×?10?C7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8?±?0.4% (SD, n?=?4) and mudstones 3.1?±?0.8% (SD, n?=?4).  相似文献   

2.
The validity of the thermodynamic cBΩ model is tested in terms of the experimentally determined diffusion coefficients of He in a natural Fe-bearing olivine (Fo90) and a synthetic end-member forsterite (Mg2SiO4) over a broad temperature range (250–950 °C), as reported recently by Cherniak and Watson (Geochem Cosmochim Acta 84:269–279, 2012). The calculated activation enthalpies for each of the three crystallographic axes were found to be (134 ± 5), (137 ± 13) and (158 ± 4) kJ mol?1 for the [100], [010] and [001] directions in forsterite, and (141 ± 9) kJ mol?1 for the [010] direction in olivine, exhibiting a deviation of <1 % with the corresponding reported experimental values. Additional point defect parameters such as activation volume, activation entropy and activation Gibbs free energy were calculated as a function of temperature. The estimated activation volumes (3.2–3.9 ± 0.3 cm3 mol?1) of He diffusion in olivine are comparable with other reported results for hydrogen and tracer diffusion of Mg cations in olivine. The pressure dependence of He diffusion coefficients was also determined, based on single experimental diffusion measurements at 2.6 and 2.7 GPa along the [001] direction in forsterite at 400 and 650 °C.  相似文献   

3.
Helium‐3 is a stable cosmogenic isotope that can be used to determine the time interval during which a rock sample has been at or close to the Earth’s surface. As a result of the high production rate of ‘cosmogenic’3He (≈ 130 at g?1 year?1) and the low detection limit of modern mass spectrometers, it is possible to date exceptionally young surfaces (≈ 1000 years). The precision and accuracy of cosmogenic 3He measurements depend critically on the passive helium blank (produced by the metalwork of the extraction furnace) which can be significant relative to the sample signals. We have developed and constructed, at the CRPG (Nancy, France), a new high temperature furnace (< 1500 °C) to extract helium in minerals such as apatite, pyroxene and olivine at 1050, 1350 and 1450 °C, respectively. The furnace demonstrated an excellent helium extraction yield (> 99% for olivine and pyroxene for heating times of 20–30 min and temperatures in the range 1050–1450 °C) and low residual helium contributions (the blank, obtained under the same analytical conditions as for sample extraction: 1 × 10?15 mole 4He and < 4 × 10?21 mole 3He). This is approximately an order of magnitude lower than those reported by other laboratories using conventional furnaces.  相似文献   

4.
Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × 10?13 cm2 s?1 at 5 mol% åkermanite composition (Ak5), increases to 2 × 10?11 cm2 s?1 at Ak80, and then decreases to 1 × 10?12 cm2 s?1 at Ak95. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ mol?1 for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions.  相似文献   

5.
Subsolidus marginal zoning in calcium-poor clinopyroxenes and intermediate zoning in discontinuously zoned subcalcic- to calcium-rich clinopyroxenes from ironrich igneous rocks is used to calculate the interdiffusion coefficient, DCa?(Fe,Mg), parallel to the crystallographic caxis. Wagner's mathematical models describing the displacement of interfaces in solids as the result of isothermal diffusion are adopted. The steady-state heat flow equation is used to approximate the diffusion times. The calculated interdiffusion coefficients are of a reasonable order of magnitude, viz. 6.0×10?20?2.0×10?17cm2· sec?1 at about 900° C.  相似文献   

6.
Tracer diffusion coefficients of 153Gd and 152Eu in olivine tholeiite have been determined at temperatures between 1150 and 1440°C. The results are identical for both tracers within experimental error. Between 1440 and 1320°C the diffusion coefficients are given by D(Eu, Gd) = 0.058 exp(?40,600/ RT). Between 1320 and 1210°C, the diffusion coefficients are constant at D = (1.4 ± 0.4) × 10?7 cm2s?1 and between 1210 and 1150°C, the D values drop irregularly to 4 × 10?9 cm2s?1. The liquidus temperature (1270°C) lies within the region of constant D. Such anomalous behavior has not been encountered in previous studies of Ca, Sr, Ba and Co diffusion in basalt. To explain the constant D value near the liquidus, we speculate that the structure of the melt changes as a function of temperature in such a way that the normal temperature dependence of the diffusivity is compensated. For example, the rare earth ions may be displaced from their (high temperature) octahedral coordination sites to other sites where they are more readily dissociated and therefore become progressively more mobile. The behavior below 1210°C may be the result of relatively stable complexes or molecules in the melt or of the formation of a REE bearing crystalline phase that has so far escaped detection. Preliminary results for Eu diffusion in obsidian are D (Eu, 800°C) = 5 × 10?13 cm2 s?1 and D (Eu, 950°C) = 1.5 × 10?11 cm2 s?1. These data are consistent with an activation energy of 59 Kcal mole?1. These low diffusivities indicate that the partitioning of REE in crystallizing intermediate and acidic melts may be controlled by diffusion in the melt rather than equilibrium between the crystal surface and the bulk melt.The diffusion data are applied to partial melting in the mantle, in an attempt to explain how LREE enriched tholeiites may be derived from a LREE depleted mantle source. In this model LREE diffuse from garnet bearing regions that have small melt fractions into garnet free regions that have relatively large melt fractions. REE diffusion is so slow that this process is quantitatively significant only in small partially molten bodies (diameter ~1 km or less) or in larger, but strongly flattened bodies. Internal convective motion during diapiric rise would also increase the efficiency of the process.  相似文献   

7.
A natural quartz sample free of mineral and fluid inclusions was irradiated with a 200 MeV proton beam to produce spallogenic 21Ne, 3He and 4He. Temperature-dependent diffusivities of these three nuclides were then determined simultaneously by high precision stepped-heating and noble gas mass spectrometry. The outward mobility of proton-induced nuclides reflects diffusion through the quartz lattice. In the studied range of 70 to 400°C the helium diffusion coefficients exceed those of neon by 5-7 orders of magnitude. The implied diffusion parameters Ea = 153.7 ± 1.5 (kJ/mol) and ln(Do/a2) = 15.9 ± 0.3 (ln(s−1)) and Ea = 84.5 ± 1.2 (kJ/mol) and ln(Do/a2) = 11.1 ± 0.3 (ln(s−1)) for proton-induced 21Ne and 3He, respectively, indicate that cosmogenic neon will be quantitatively retained in inclusion-free quartz at typical Earth surface temperatures whereas cosmogenic helium will not. However, the neon diffusion parameters also indicate that diffusive loss needs to be considered for small (<1 mm) quartz grains that have experienced elevated temperatures. Since natural quartz often contains fluid inclusions which may enhance noble gas retentivity, these parameters likely represent an end-member case of purely solid-state diffusion. The ∼70 kJ/mol higher activation energy for neon diffusion compared to helium diffusion likely represents an energy barrier related to its ∼13% greater diameter and provides a fundamental constraint with which to test theories of solid state diffusion. The diffusion parameters for proton-induced 4He are indistinguishable from those for 3He, providing no evidence for the commonly expected inverse square root of the mass diffusion relationship between isotopes. We also find preliminary indication that increased exposure to radiation may enhance neon and helium retentivity in quartz at low temperatures.  相似文献   

8.
The measured radiogenic 40Ar loss from sized biotite (56% annite) samples following isothermalhydrothermal treatment have provided model diffusion coefficients in the temperature interval 600°C to 750°C, calculated on the assumption that Ar transport proceeds parallel to cleavage. These data yield an array on an Arrhenius plot with a slope corresponding to an activation energy 47.0 ± 2 kcal-mol?1 and a frequency factor of 0.077+0.21?0.06 cm2-sec?1. Together with previous diffusion data for micas in the annitephlogopite series, our results indicate a strong compositional effect, with increasing FeMg ratio corresponding to an increase in diffusivity. An effective diffusion radius of about 150 μm for biotite is inferred from the experimental data which compares favorably with that estimated from geological studies. A pressure effect on activation energy corresponding to an activation volume of about 14 cm3-mol?1 is observed. These data yield closure temperature estimates for this biotite composition cooling at rates of 100°C-Ma?1, 10°C-Ma?1 and 1°C-Ma?1 of 345°C, 310°C and 280°C, respectively. 40Ar39Ar age-spectrum analysis of a hydrothermally treated biotite yields a complex release pattern casting doubt on the general usefulness of such measurements for geochronological purposes.  相似文献   

9.
The measurement of diffusion coefficients for Na, K, Rb and Cs has been realized by the technique of active salt deposits on glasses of albite and orthoclase composition, at normal pressure and in the temperature range 300–1000°C. The values of D are between 10?6 and 10?12 cm2 s?1 and, for every type of run, they vary with temperature according to Arrhenius laws, with activation energies ranging from 13 to 68 kcal mole?1. These important variations are related to the size of the diffusing element (at 700°C in albite glass DNa/DK/DRbDCs ~- 107/105/103/1) and to the size of the major alkali element (for rubidium at 800°C Dor·gl/Dab·gl ~- 20). By comparison with available data on diffusion in feldspars, we emphasize the influence of the defect density on the diffusion process.  相似文献   

10.
About possibility of isotope dating of native gold by the (U-Th)/He method   总被引:2,自引:0,他引:2  
For investigation of helium in native gold, a new measuring complex was created and used: the high sensitivity mass spectrometer MSU-G (ZAO SKB “SPECTRON”). The sensitivity of measuring 4He was 5.3 × 10?13 cm3/g per impulse. Experiments in stepwise heating of samples have been carried out, and the kinetics of radiogenic 4He emanation from native gold was investigated. Migration parameters (activation energy and frequency factor) were determined. Model calculations of stability (closure temperature) of radiogenic 4He in the native gold structure with a given time and temperature of thermal influences were made using the data received. The concentration of 4He in native gold from the original deposit Nesterovskoe is (4.7 ± 0.1) × 10?5 cm3/g in the sample from the placer; from Chudnoe deposit, it is (3.8 ± 0.1) × 10?5 cm3/g; from sulfide deposits of Kitoiskii knot of Eastern Sayani, it is (1.9 ± 0.1) × 10?5 cm3/g; and from the South Muiskii ore region it is (8.7 ± 0.5) × 10?7 cm3/g. The received curve lines of kinetics of 4He emanation from native gold show that radiogenic helium is well bonded in the native gold structure: in all the examined samples, most 4He emanates only by reaching the temperature of 950–1000°C. A specific feature of the kinetics of radiogenic 4He emanation in all examined samples is an outburstlike emanation in the form of a peak of large amplitude in the area of temperatures near the melting temperature point of gold. This is stipulated by the existence of helium bubbles released by metals only while they melt. The spectrum of helium thermal desorption from native gold has a complicated form and is a result of superposition of several peaks. This proves the migration of groups of atoms located in the gold structure in different energy states. Very large values of the activation energy of helium migration from native gold were received: up to 161–176 kcal/mol. Extremely large values of the frequency factor, from 2 × 1018 to 3 × 1032, correspond to such values of activation energies. This is caused probably by helium migration in the form of gas bubbles. The received data indicate the very high stability of the (U-Th)/He isotope system in native gold. Using the (U-Th)/He method of isotope geochronology seems to be very promising for isotope dating of these strategic raw materials.  相似文献   

11.
The experimental dissolution of zircon into a zircon-undersaturated felsic melt of variable water content at high pressure in the temperature range 1,020° to 1,500° C provides information related to 1) the solubility of zircon, 2) the diffusion kinetics of Zr in an obsidian melt, and 3) the rate of zircon dissolution. Zirconium concentration profiles observed by electron microprobe in the obsidian glass adjacent to a large, polished zircon face provide sufficient information to calculate model diffusion coefficients. Results of dissolution experiments conducted in the virtual absence of water (<0.2% H2O) yield an activation energy (E) for Zr transport in a melt ofM=1.3 [whereM is the cation ratio (Na+K+2Ca)/(Al·Si)] of 97.7±2.8 kcal-mol?1, and a frequency factor (D 0) of 980 ?580 +1,390 cm2-sec?1. Hydrothermal experiments provide an E=47.3±1.9 kcal-mol?1 andD 0=0.030 ?0.015 +0.030 cm2-sec?1. Both of these results plot close to a previously defined diffusion compensation line for cations in obsidian. The diffusivity of Zr at 1,200° C increases by a factor of 100 over the first 2% of water introduced into the melt, but subsequently rises by only a factor of five to an apparent plateau value of ~2×10?9 cm2-sec?1 by ~6% total water content. The remarkable contrast between the wet and dry diffusivities, which limits the rate of zircon dissolution into granitic melt, indicates that a 50 μm diameter zircon crystal would dissolve in a 3 to 6% water-bearing melt at 750° C in about 100 years, but would require in excess of 200 Ma to dissolve in an equivalent dry system. From this calculation we conclude that zircon dissolution proceeds geologically instantaneously in an undersaturated, water-bearing granite. Estimates of zircon solubility in the obsidian melt in the temperature range of 1,020° C to 1,500° C confirm and extend an existing model of zircon solubility to these higher temperatures in hydrous melts. However, this model does not well describe zircon saturation behavior in systems with less than about 2% water.  相似文献   

12.
The infinite dilution diffusion coefficient for Al(OH)4? necessary to calculate fluxes of dissolved Al between sediments and overlying waters, was determined at 25°C. Measurements were made using the diaphragm-cell method by diffusing Al(OH)4? spiked KBr solutions against KCL over a range of ionic strengths. The mean of 9 separate measurements gives 1.04 ± .02 × 10?5cm2/s as the infinite dilution diffusion coefficient for Al(OH)4? at 25°C.  相似文献   

13.
Ground waters in a Precambrian granitic batholith at the Whiteshell Nuclear Research Establishment (WNRE) in Pinawa, Manitoba contain between 5 × 10?5 and 10?1 cc STP/gH2O of radiogenic helium-4 but have relatively uniform 3He/4He ratios of between 0.6 × 10?8 and 2.3 × 103. The highest helium samples also contain radiogenic 21,22Ne produced by (α,n) or (n,α) reactions with other isotopes. As much as 1.8 × 10?9ccSTP/gH2O of excess 21Ne and 3.8 × 10?9ccSTP/gH2O of excess 22Ne have been measured. Helium and 21Ne ages of these ground waters, calculated on the basis of known crustal production rates of 4He and 21Ne, are unreasonably high (up to 2 × 105 years) and incompatible with the 14C ages and other isotopic and hydrogeologic data. Uranium enrichment in the flow porosity of the granite may dominate 4He and 21,22Ne production in this granite and mask the contributions from more typical U and Th concentrations in the rock matrix.At the Chalk River Nuclear Laboratories in Ontario helium concentrations in ground waters in a Precambrian monzonitic gneiss range from 1.5 × 10?7 to 8.7 × 10?4ccSTP/gH2O with the 3He/4He ratios ranging from 2.0 × 10?3 to 1.5 × 10?7. The highest helium concentrations may be attributable to the presence of a thick uraniferous pegmatite vein and yield helium ages more than two orders of magnitude higher than the 14C ages. Application of He age dating equations to ground waters from Precambrian granitic rocks requires knowledge of the nature of uranium and thorium enrichment in the subsurface in order to select appropriate values for porosity and uranium and thorium concentration in the rock.  相似文献   

14.
We present new helium isotope data from the Macdonald seamount (Austral chain). The helium isotopic ratio varies from 4He/3He=45 000 (R/Ra=16.0) to 200 170 (R/Ra=3.6). The helium content is between 1.5×10?8 and 1.1×10?5 ccSTP/g. These helium results show clearly the presence of primitive mantle material in the source of the Austral chain. Macdonald has the lowest 4He/3He ratio among the Polynesian submarine volcanoes, except Hawaii (Loihi). The simplest explanation for the primitive helium signature is the presence under Macdonald of a mantle plume that derives either from the 670 km or 2900 km boundary layers, or, eventually, from the top of a large mantle dome resulting from a stratified two-layer convection. This plume contains less-degassed material with low 4He/3He ratio. To cite this article: M. Moreira, C. Allègre, C. R. Geoscience 336 (2004).  相似文献   

15.
We have determined Fe–Mg diffusion coefficients in olivines from different sources (Nanga Parbat, Pakistan and San Carlos, Arizona, USA) at atmospheric pressure as a function of composition, oxygen fugacity (10−5–10−12 Pa) and temperature (700–1200°C) using thin films produced by pulsed laser deposition and RBS to analyze the concentration profiles. We have characterized the nano-scale structure and composition of the thin films annealed at various conditions and shown that the nature of the film (e.g. crystallinity, wetting behavior) depends strongly on the annealing conditions. If these variations are not taken into account in the form of boundary conditions for modeling the diffusion profiles, artifacts would result in the diffusion data. The diffusion coefficients obtained from 75 experiments reveal that (i) between fO2 of 10−5 and 10−10 Pa, diffusion along all three principal crystallographic directions in olivine, [100], [010] and [001], are described by a constant activation energy of ∼200 kJ/mol, precluding any temperature dependence of diffusion anisotropy and change of mechanism of diffusion at temperatures between 950 and 1200°C, (ii) diffusion coefficients increase with oxygen fugacity at fO2 > 10−10 Pa, with an fO2 exponent that lies between 1/4 and 1/7, and (iii) at fO2 below 10−10 Pa, and consequently at temperatures below ∼900°C, diffusion becomes weakly dependent/independent of fO2, indicating a change of diffusion mechanism. Activation energy of diffusion at these conditions is slightly higher, ∼220 kJ/mol. The data, including the change of mechanism, are analyzed in terms of point defect chemistry in Part II of this work to derive an equation that allows calculation of diffusivities in olivine over its entire field of stability. Availability of directly measured data at temperatures down to 700°C imply that for the first time diffusion coefficients can be interpolated, rather than extrapolated, for modeling most natural systems.  相似文献   

16.
《Applied Geochemistry》1998,13(6):707-714
The properties of fluorapatite, both a useful radiochronometer and a potential storage matrix specific for minor actinides produced by the reprocessing of spent nuclear fuel, have been investigated with emphasis to its response to alpha decay. Exfoliation, which occurs after implantation of high doses of 1.6-MeV He-ions (>1.4×1017 ions cm−2, corresponding to 5% atomic proportion), could set an upper limit to the concentration of imbedded actinides (about 2 atoms % corresponding to 20 wt. %) or storage age unless significant diffusion of radiogenic He intervenes. This process has been studied by combining He implantation, thermal treatments in the temperature range 124–250°C and measurement of the resulting He profile by an ion beam technique (ERDA) using 8.5-MeV C ions. The diffusion coefficient follows an Arrhenius' law with an activation energy of 120 (±2) KJ/mole and a frequency factor of 14.5 (±7)×10−3 cm2 sec−1 in agreement with literature data. The inferred closure temperature which validates the U,Th–He radiochronological method also fits previous values: 97 (±10)°C for grain size 165 μm. With respect to radwaste disposal. He volume diffusion is too small to exclude the occurrence of exfoliation unless diffusion at grain boundary is much higher and a fine-grain matrix is deliberately chosen.  相似文献   

17.
The weathering rates and mechanisms of three types of glassy rocks were investigated experimentally at 25 °C, pH 1.0 to 6.2, and reaction times as much as to 3 months. Changes in major element chemistry were monitored concurrently as a function of time in the aqueous solution and within the near surface region of the glass. Leach profiles, obtained by a HF leaching technique, displayed near-surface zones depleted in major cations. These zones increased in depth with increasing time and decreasing pH of reactions. Release rates into the aqueous solution were parabolic for Na and K and linear for Si and Al. A coupled weathering model, involving surface dissolution with concurrent diffusion of Na, K, and Al, produced a mass balance between the aqueous and glass phases. Steady state conditions are reached at pH 1.0 after approximately 3 weeks of reaction. Steady-state is not reached even after 3 months at pH 6.2.An interdiffusion model describes observed changes in Na diffusion profiles for perlite at pH 1.0. The calculated Na self-diffusion coefficient of 5 × 10?19 cm2·s?1 at 25°C approximates coefficients extrapolated from previously reported high temperature data for obsidian. The self-diffusion coefficient for H3O+, 1.2 × 10?20 cm2·s?1, is similar to measured rates of water diffusion during hydration of obsidian to form perlite.  相似文献   

18.
This study focuses on the water and gas chemistry of the northeastern Algerian thermal waters. The helium gas was used to detect the origin of the geothermal fluid. In the Guelma Basin, the heat flow map shows an anomaly of 120 ± 20 mW/m2 linked to the highly conductive Triassic extrusion. The chemical database reveals the existence of three water types, Ca-SO4/Na-Cl, which are related to evaporites and rich in halite and gypsum minerals. The third type is Ca (Na)-HCO3, which mostly characterizes the carbonated Tellian sector. The origin of thermal waters using a gas-mixing model indicates a meteoric origin, except for the El Biban hot spring (W10), which shows a He/Ar ratio of 0.213, thus suggesting the presence of batholith. The helium distribution map indicates a lower 3He/4He ratio between 0 Ra and 0.04 Ra in the W10 and W15 samples, which is compatible with the crustal ratio. Reservoir temperatures estimated by silica geothermometers give temperatures less than 133 °C. The geothermal conceptual model suggests that a geothermal system was developed by the deep penetration of infiltrated cold waters to a depth of 2.5 km and then heated by a conductive heat source (batholith for El Biban case). The thermal waters rise up to the surface through the deep-seated fractures. During their ascension, they are mixed with shallow cold groundwater, which increase the Mg content and cause the immature classification of the water samples.  相似文献   

19.
Concentrations of helium isotopes were measured in gas and water samples from 28 thermal mineral springs in Tuva and adjacent regions of Buryatia and Gorny Altai. It is shown that fluids from 16 springs are rich in mantle helium (4–35%). With regard to the air contamination of the samples, the corrected ratios of helium isotopes (Rcor = 3He/4He) in these springs vary from 5.3 × 10–8 to 422 × 10–8. Using these Rcor values, we estimated the heat flow; these estimates were then applied to calculate the deep-level temperatures and thickness of thermal lithosphere. According to these parameters, the Tuva region is divided into two parts. Eastern Tuva (from ~96° E to the boundary with Buryatia) is characterized by abnormal helium isotope ratios and heat flow indicating the intense heating of the Earth’s crust in eastern Tuva: At a depth of 50 km, a temperature reaches 1000–1200 °C, and the thickness of thermal lithosphere is reduced to 70–50 km. This testifies to a rift process west (probably, up to 96° E) of the Baikal Rift Zone. In western Tuva, the average heat flow is much lower, ~45–50 mW/m2, which is commensurate with that in the Altai–Sayan folded area as a whole. The deep-level temperatures here are twice lower, and the lithosphere thickness increases to 150 km.  相似文献   

20.
The interdiffusion coefficient of Mg–Fe in olivine (D Mg–Fe) was obtained at 1,400–1,600 °C at the atmospheric pressure with the oxygen fugacity of 10?3.5–10?2 Pa using a diffusion couple technique. The D Mg–Fe shows the anisotropy (largest along the [001] direction and smallest along the [100] direction), and its activation energy (280–320 kJ/mol) is ~80–120 kJ/mol higher than that estimated at lower temperatures. The D Mg–Fe at temperatures of >1,400 °C can be explained by the cation-vacancy chemistry determined both by the Fe3+/Fe2+ equilibrium and by the intrinsic point defect formation with the formation enthalpy of 220–270 kJ/mol depending on the thermodynamical model for the Fe3+/Fe2+ equilibrium in olivine. The formation enthalpy of 220–270 kJ/mol for the point defect (cation vacancy) in olivine is consistent with that estimated from the Mg self-diffusion in Fe-free forsterite. The increase in the activation energy of D Mg–Fe at >1,400 °C is thus interpreted as the result of the transition of diffusion mechanism from the transition metal extrinsic domain to the intrinsic domain at the atmospheric pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号