首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Enrichment iron ore of the Hamersley Province, currently estimated at a resource of over 40 billion tonnes (Gt), mainly consists of BIF (banded iron-formation)-hosted bedded iron deposits (BID) and channel iron deposits (CID), with only minor detrital iron deposits (DID). The Hamersley BID comprises two major ore types: the dominant supergene martite–goethite (M-G) ores (Mesozoic–Paleocene) and the premium martite–microplaty hematite ores (M-mplH; ca 2.0 Ga) with their various subtypes. The supergene M-G ores are not common outside Australia, whereas the M-mplH ores are the principal worldwide resource. There are two current dominant genetic models for the Hamersley BID. In the earlier 1980–1985 model, supergene M-G ores formed in the Paleoproterozoic well below normal atmospheric access, driven by seasonal oxidising electrochemical reactions in the vadose zone of the parent BIF (cathode) linked through conducting magnetite horizons to the deep reacting zone (anode). Proterozoic regional metamorphism/diagenesis at ~80–100°C of these M-G ores formed mplH from the matrix goethite in the local hydrothermal environment of its own exhaled water to produce M-mplH ores with residual goethite. Following general exposure by erosion in the Cretaceous–Paleocene when a major second phase of M-G ores formed, ground water leaching of residual goethite from the metamorphosed Proterozoic ores resulted in the mainly goethite-free M-mplH ores of Mt Whaleback and Mt Tom Price. Residual goethite is common in the Paraburdoo M-mplH-goethite ores where erratic remnants of Paleoproterozoic cover indicate more recent exposure.

Deep unweathered BIF alteration residuals in two small areas of the Mt Tom Price M-mplH deposits have been used since 1999 for new hypogene–supergene modelling of the M-mplH ores. These models involve a major Paleoproterozoic hydrothermal stage in which alkaline solutions from the underlying Wittenoom Formation dolomite traversed the Southern Batter Fault to leach matrix silica from the BIF, adding siderite and apatite to produce a magnetite–siderite–apatite ‘protore.’ A later heated meteoric solution stage oxidised siderite to mplH + ankerite and magnetite to martite. Weathering finally removed residual carbonates and apatite leaving the high-grade porous M-mplH ore. Further concepts for the Mt Tom Price North and the Southern Ridge Deposits involving acid solutions followed, but these have been modified to return essentially to the earlier hypogene–supergene model. Textural data from erratic ‘metasomatic BIF’ zones associated with the above deposits are unlike those of the typical martite–microplaty hematite ore bodies. The destiny of the massive volumes of dissolved silica gangue and the absence of massive silica aureoles has not been explained. Petrographic and other evidence indicate the Mt Tom Price metasomatism is a localised post-ore phenomenon. Exothermic oxidation reactions in the associated pyrite-rich black shales during post-ore removal by groundwater of remnant goethite in the ores may have resulted in this very localised and erratic hydrothermal alteration of BIF and its immediately associated pre-existing ore.  相似文献   

2.
西澳大利亚州铁矿分布规律及矿床成因分析   总被引:2,自引:0,他引:2  
西澳大利亚州铁矿资源主要分布在北部皮尔巴拉和南部的伊尔岗两个太古宙克拉通。皮尔巴拉克拉通BIF型铁矿在汤姆普赖斯山、恰那和布鲁克曼的矿石矿物组合为假象赤铁矿一微板状赤铁矿,马拉曼巴的为赤铁矿一针铁矿,CID型铁矿在罗布河和杨迪矿石类型主要为褐铁矿;伊尔岗克拉通BIF型铁矿在库里阿诺的矿石矿物组合为针铁矿一假象赤铁,比温和曼迪尕的为磁铁矿±假象赤铁矿和针铁矿±赤铁矿。BIF型铁矿为浅生一变质成矿,而CID型铁矿则是先前形成的BIF经侵蚀、搬运、沉积和埋藏作用形成。  相似文献   

3.
The BIF-hosted iron ore system represents the world's largest and highest grade iron ore districts and deposits. BIF, the precursor to low- and high-grade BIF hosted iron ore, consists of Archean and Paleoproterozoic Algoma-type BIF (e.g., Serra Norte iron ore district in the Carajás Mineral Province), Proterozoic Lake Superior-type BIF (e.g., deposits in the Hamersley Province and craton), and Neoproterozoic Rapitan-type BIF (e.g., the Urucum iron ore district).The BIF-hosted iron ore system is structurally controlled, mostly via km-scale normal and strike-slips fault systems, which allow large volumes of ascending and descending hydrothermal fluids to circulate during Archean or Proterozoic deformation or early extensional events. Structures are also (passively) accessed via downward flowing supergene fluids during Cenozoic times.At the depositional site the transformation of BIF to low- and high-grade iron ore is controlled by: (1) structural permeability, (2) hypogene alteration caused by ascending deep fluids (largely magmatic or basinal brines), and descending ancient meteoric water, and (3) supergene enrichment via weathering processes. Hematite- and magnetite-based iron ores include a combination of microplaty hematite–martite, microplaty hematite with little or no goethite, martite–goethite, granoblastic hematite, specular hematite and magnetite, magnetite–martite, magnetite-specular hematite and magnetite–amphibole, respectively. Goethite ores with variable amounts of hematite and magnetite are mainly encountered in the weathering zone.In most large deposits, three major hypogene and one supergene ore stages are observed: (1) silica leaching and formation of magnetite and locally carbonate, (2) oxidation of magnetite to hematite (martitisation), further dissolution of quartz and formation of carbonate, (3) further martitisation, replacement of Fe silicates by hematite, new microplaty hematite and specular hematite formation and dissolution of carbonates, and (4) replacement of magnetite and any remaining carbonate by goethite and magnetite and formation of fibrous quartz and clay minerals.Hypogene alteration of BIF and surrounding country rocks is characterised by: (1) changes in the oxide mineralogy and textures, (2) development of distinct vertical and lateral distal, intermediate and proximal alteration zones defined by distinct oxide–silicate–carbonate assemblages, and (3) mass negative reactions such as de-silicification and de-carbonatisation, which significantly increase the porosity of high-grade iron ore, or lead to volume reduction by textural collapse or layer-compaction. Supergene alteration, up to depths of 200 m, is characterised by leaching of hypogene silica and carbonates, and dissolution precipitation of the iron oxyhydroxides.Carbonates in ore stages 2 and 3 are sourced from external fluids with respect to BIF. In the case of basin-related deposits, carbon is interpreted to be derived from deposits underlying carbonate sequences, whereas in the case of greenstone belt deposits carbonate is interpreted to be of magmatic origin. There is only limited mass balance analyses conducted, but those provide evidence for variable mobilization of Fe and depletion of SiO2. In the high-grade ore zone a volume reduction of up to 25% is observed.Mass balance calculations for proximal alteration zones in mafic wall rocks relative to least altered examples at Beebyn display enrichment in LOI, F, MgO, Ni, Fe2O3total, C, Zn, Cr and P2O5 and depletions of CaO, S, K2O, Rb, Ba, Sr and Na2O. The Y/Ho and Sm/Yb ratios of mineralised BIF at Windarling and Koolyanobbing reflect distinct carbonate generations derived from substantial fluid–rock reactions between hydrothermal fluids and igneous country rocks, and a chemical carbonate-inheritance preserved in supergene goethite.Hypogene and supergene fluids are paramount for the formation of high-grade BIF-hosted iron ore because of the enormous amount of: (1) warm (100–200 °C) silica-undersaturated alkaline fluids necessary to dissolve quartz in BIF, (2) oxidized fluids that cause the oxidation of magnetite to hematite, (3) weakly acid (with moderate CO2 content) to alkaline fluids that are necessary to form widespread metasomatic carbonate, (4) carbonate-undersaturated fluids that dissolve the diagenetic and metasomatic carbonates, and (5) oxidized fluids to form hematite species in the hypogene- and supergene-enriched zone and hydroxides in the supergene zone.Four discrete end-member models for Archean and Proterozoic hypogene and supergene-only BIF hosted iron ore are proposed: (1) granite–greenstone belt hosted, strike-slip fault zone controlled Carajás-type model, sourced by early magmatic (± metamorphic) fluids and ancient “warm” meteoric water; (2) sedimentary basin, normal fault zone controlled Hamersley-type model, sourced by early basinal (± evaporitic) brines and ancient “warm” meteoric water. A variation of the latter is the metamorphosed basin model, where BIF (ore) is significantly metamorphosed and deformed during distinct orogenic events (e.g., deposits in the Quadrilátero Ferrífero and Simandou Range). It is during the orogenic event that the upgrade of BIF to medium- and high-grade hypogene iron took place; (3) sedimentary basin hosted, early graben structure controlled Urucum-type model, where glaciomarine BIF and subsequent diagenesis to very low-grade metamorphism is responsible for variable gangue leaching and hematite mineralisation. All of these hypogene iron ore models do not preclude a stage of supergene modification, including iron hydroxide mineralisation, phosphorous, and additional gangue leaching during substantial weathering in ancient or Recent times; and (4) supergene enriched BIF Capanema-type model, which comprises goethitic iron ore deposits with no evidence for deep hypogene roots. A variation of this model is ancient supergene iron ores of the Sishen-type, where blocks of BIF slumped into underlying karstic carbonate units and subsequently experienced Fe upgrade during deep lateritic weathering.  相似文献   

4.
Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda–Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite–martite–goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in ‘least-altered’ hematite–magnetite–metachert–BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe–Ca–Mg–Ni–Co–P–REE metasomatism that produced local Ni–REE-rich Fe–dolomite–magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle–ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni–Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite–hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)–Fe–dolomite–quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides, carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of ~100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important ‘ground preparation’ for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadrilátero Ferrífero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene–supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide.  相似文献   

5.
The Madoonga iron ore body hosted by banded iron formation (BIF) in the Weld Range greenstone belt of Western Australia is a blend of four genetically and compositionally distinct types of high-grade (>55 wt% Fe) iron ore that includes: (1) hypogene magnetite–talc veins, (2) hypogene specular hematite–quartz veins, (3) supergene goethite–hematite, and (4) supergene-modified, goethite–hematite-rich detrital ores. The spatial coincidence of these different ore types is a major factor controlling the overall size of the Madoonga ore body, but results in a compositionally heterogeneous ore deposit. Hypogene magnetite–talc veins that are up to 3 m thick and 50 m long formed within mylonite and shear zones located along the limbs of isoclinal, recumbent F1 folds. Relative to least-altered BIF, the magnetite–talc veins are enriched in Fe2O3(total), P2O5, MgO, Sc, Ga, Al2O3, Cl, and Zr; and depleted in SiO2 and MnO2. Mafic igneous countryrocks located within 10 m of the northern contact of the mineralised BIF display the replacement of primary igneous amphibole and plagioclase, and metamorphic chlorite by hypogene ferroan chlorite, talc, and magnetite. Later-forming, hypogene specular hematite–quartz veins and their associated alteration halos partly replace magnetite–talc veins in BIF and formed during, to shortly after, the F2-folding and tilting of the Weld Range tectono-stratigraphy. Supergene goethite–hematite ore zones that are up to 150 m wide, 400 m long, and extend to depths of 300 m replace least-altered BIF and existing hypogene alteration zones. The supergene ore zones formed as a result of the circulation of surface oxidised fluids through late NNW- to NNE-trending, subvertical brittle faults. Flat-lying, supergene goethite–hematite-altered, detrital sediments are concentrated in a paleo-topographic depression along the southern side of the main ENE-trending ridge at Madoonga. Iron ore deposits of the Weld Range greenstone belt record remarkably similar deformation histories, overprinting hypogene alteration events, and high-grade Fe ore types to other Fe ore deposits in the wider Yilgarn Craton (e.g. Koolyanobbing and Windarling deposits) despite these Fe camps being presently located more than 400 km apart and in different tectono-stratigraphic domains. Rather than the existence of a synchronous, Yilgarn-wide, Fe mineralisation event affecting BIF throughout the Yilgarn, it is more likely that these geographically isolated Fe ore districts experienced similar tectonic histories, whereby hypogene fluids were sourced from commonly available fluid reservoirs (e.g. metamorphic, magmatic, or both) and channelled along evolving structures during progressive deformation, resulting in several generations of Fe ore.  相似文献   

6.
There has recently been a rapid growth in the amount and quality of digital geological and geophysical data for the majority of the Australian continent. Coupled with an increase in computational power and the rising importance of computational methods, there are new possibilities for a large scale, low expenditure digital exploration of mineral deposits. Here we use a multivariate analysis of geophysical datasets to develop a methodology that utilises machine learning algorithms to build and train two-class classifiers for provincial-scale, greenfield mineral exploration. We use iron ore in Western Australia as a case study, and our selected classifier, a mixture of a Gaussian classifier with reject option, successfully identifies 88% of iron ore locations, and 92% of non-iron ore locations. Parameter optimisation allows the user to choose the suite of variables or parameters, such as classifier and degree of dimensionality reduction, that provide the best classification result. We use randomised hold-out to ensure the generalisation of our classifier, and test it against known ground-truth information to demonstrate its ability to detect iron ore and non-iron ore locations. Our classification strategy is based on the heterogeneous nature of the data, where a well-defined target “iron-ore” class is to be separated from a poorly defined non-target class. We apply a classifier with reject option to known data to create a discriminant function that best separates sampled data, while simultaneously “protecting” against new unseen data by “closing” the domain in feature space occupied by the target class. This shows a substantial 4% improvement in classification performance. Our predictive confidence maps successfully identify known areas of iron ore deposits through the Yilgarn Craton, an area that is not heavily sampled in training, as well as suggesting areas for further exploration throughout the Yilgarn Craton. These areas tend to be more concentrated in the north and west of the Yilgarn Craton, such as around the Twin Peaks mine (~ 27°S, 116°E) and a series of lineaments running east–west at ~ 25°S. Within the Pilbara Craton, potential areas for further expansion occur throughout the Marble Bar vicinity between the existing Spinifex Ridge and Abydos mines (21°S, 119–121°E), as well as small, isolated areas north of the Hamersley Group at ~ 21.5°S, ~ 118°E. We also test the usefulness of radiometric data for province-scale iron ore exploration, while our selected classifier makes no use of the radiometric data, we demonstrate that there is no performance penalty from including redundant data and features, suggesting that where possible all potentially pertinent data should be included within a data-driven analysis. This methodology lends itself to large scale, reconnaissance mineral explorations, and, through varying the datasets used and the commodity being targeted, predictive confidence maps for a wide range of minerals can be produced.  相似文献   

7.
Archaean–Paleoproterozoic foliated amphibole-gneisses and migmatites interstratified with amphibolites, pyroxeno-amphibolites and REE-rich banded-iron formations outcrop at Mafé, Ndikinimeki area. The foliation is nearly vertical due to tight folds. Flat-lying quartz-rich mica schists and quartzites, likely of Pan-African age, partly cover the formations. Among the Mafé BIFs, the oxide BIF facies shows white layers of quartz and black layers of magnetite and accessory hematite, whereas the silicate BIF facies is made up of thin discontinuous quartz layers alternating with larger garnet (almandine–spessartine) + chamosite + ilmenite ± Fe-talc layers. REE-rich oxide BIFs compositions are close to the East Pacific Rise (EPR) hydrothermal deposit; silicate BIFs plot midway between EPR and the associated amphibolite, accounting for a contamination by volcanic materials, in addition to the hydrothermal influence during their oceanic deposition. The association of an oceanic setting with alkaline and tholeiitic magmatism is typical of the Algoma-type BIF deposit. The REE-rich BIFs indices recorded at Mafé are interpreted as resulting from an Archaean–Paleoproterozoic mineralization.  相似文献   

8.
Miocene fluvial goethite/hematite channel iron deposits (CID) are part of the Cenozoic Detritals 2 (CzD2), of the Western Australian Pilbara region. They range from gravelly mudstones through granular rocks to intraformational pebble, cobble and rare boulder conglomerates, as infill in numerous meandering palaeochannels in a mature surface that includes Precambrian granitoids, volcanics, metasediments, BIF and ferruginous Palaeogene valley fill. In the Hamersley Province of the Pilbara, the consolidated fine gravels and subordinate interbedded conglomerates, with their leached equivalents, are a major source of export iron ore. This granular ore typically comprises pedogenically derived pelletoids comprising hematite nuclei and goethite cortices (ooids and lesser pisoids), with abundant coarser goethitised wood/charcoal fragments and goethitic peloids, minor clay, and generally minimal porous goethitic matrix, with late-stage episodic solution and partial infill by secondary goethite, silica and siderite (now oxidised) in places. Clay horizons and non-ore polymictic basal and marginal conglomerates are also present. The accretionary pedogenic pelletoids were mostly derived from stripping of a mature ferruginous but apparently well-vegetated surface, developed in the Early to Middle Miocene on a wide variety of susceptible rock types including BIF, basic intrusives and sediments. This deep ferruginisation effectively destroyed most remnants of the original rock textures producing a unique surface, very different to those that produced the underlying CzD1 (Palaeogene) and the overlying CzD3 (Pliocene – Quaternary). The peloids were derived both intraformationally from fragmentation and reworking of desiccated goethite-rich muds, and from the regolith. Tiny wood/charcoal fragments replaced in soil by goethite, and dehydrated to hematite, formed nuclei for many pelletoids. Additionally, abundant small (≤10 mm) fragments of wood/charcoal, now goethite, were probably replaced in situ within the consolidating CID. This profusion of fossil wood, both as pelletoid nuclei and as discrete fragments, suggests major episodic wild fires in heavily vegetated catchments, a point supported by the abundance of kenomagnetite – maghemite developed from goethite in the pelletoids, but less commonly in the peloids. The matrix to the heterogeneous colluvial and intraformational components is essentially goethite, primarily derived from modified chemically precipitated iron hydroxyoxides, resulting from leaching of iron-rich soils in an organic environment, together with goethitic soil-derived alluvial material. Major variations in the granular ore CID after deposition have resulted from intermittent groundwater flow in the channels causing dissolution and reprecipitation of goethite and silica, particularly in the basal CID zones, with surface weathering of eroded exposures playing a role in masking some of these effects. However, significant variations in rock types in both the general CID and the granular ore CID have also resulted from the effects of varied provenance.  相似文献   

9.
All the major worldwide direct-shipping iron ore deposits associated with banded iron formations (BIF) are characteristically deeply weathered. They extend to considerable depths below the water table and show well-preserved primary structures and textures, but characteristically most deposits contain no evidence of chert bands being present prior to weathering. Recent studies have found evidence of hydrothermal and/ or metamorphic influences in the development of certain ore deposits and new genesis models such as the supergene-modified hypogene model have been postulated for major high-grade iron ore deposits. Nevertheless, there are many high-grade deposits that show no evidence of hypogene alteration and for which a hypogene or metamorphic genesis is unreasonable that are automatically ascribed to supergene enrichment, commonly erroneously attributed to lateritic weathering in tropical environments. Laterite (sensu lato) is a soil formation in which primary textures are destroyed and is underlain by a pallid zone showing the preservation of chert and the depletion, not enrichment, of iron oxides and thus is totally incompatible with the formation of the high-grade ore deposits. Various theories and models that purported to explain the conditions under which such a uniquely BIF-related dissolution of quartz and residual accumulation of hematite could occur by supergene processes typically conflict with current understanding of groundwater hydrology, chemistry, weathering processes and soil formation.Supergene enrichment of ore is universal in the leaching of gangue minerals such as iron silicates, carbonates and apatite and supergene enrichment of BIF to low-grade ore is common in near surface environments above the water table such as ferrugenised BIF outcrops, detrital ore deposits, and some shallow ore deposits that have been subjected to prolonged exposure to fresh meteoric water. In all cases of supergene enrichment traces of the chert bands are visible and the dissolution or replacement processes for the removal of quartz are clear, in direct contrast to the most important deep saprolite ore deposits that show no trace of chert bands.The widespread acceptance of an inappropriate and untenable supergene enrichment model inhibits search for the true origin of the ore and our ability to predict and find concealed high-grade ore deposits.  相似文献   

10.
The operation and extent of modern-style plate tectonics in the Archean and Paleoproterozoic are controversial, although subduction and terrane accretion models have been proposed for most Archean cratons in the world, including both the Yilgarn and Pilbara Cratons of Western Australia. The recognition of ancient island arcs can be used to infer convergent plate margin processes, and in this paper we present evidence for the existence of several intraoceanic island arcs now preserved in Australia. Beginning in the Archean, Australia evolved to its present configuration through the accretion and assembly of several continental blocks, by convergent plate margin processes. In Australia, possibly the best example of an Archean island arc (or primitive continental arc) is preserved within the Mesoarchean (ca. 3130–3112 Ma) Whundo Group in the Sholl Terrane of the West Pilbara Superterrane. Two younger, Neoarchean, island arc terranes, and associated accretion, have also been proposed for the Yilgarn Craton: the Saddleback island arc (ca. 2714–2665 Ma) in the southwest Yilgarn Craton and the Kurnalpi island arc (ca. 2719–2672 Ma) in the eastern Yilgarn Craton. In the early Proterozoic, in the Central Zone of the Halls Creek Orogen, northern Western Australia, the Tickalara Metamorphics (ca. 1865–1850 Ma) have been interpreted to represent an island arc. In the southwest Gawler Craton in South Australia, the St Peter Suite (ca. 1631–1608 Ma), of juvenile I-type calcalkaline tonalite to granodiorite, possibly represents an island arc. In the Musgrave Province in central Australia, age and geochemical constraints are poor due to later overprinting tectonic events, but felsic orthogneisses (ca. 1607–1565 Ma) possibly represent juvenile felsic crust which was emplaced though subduction-related processes into an oceanic island arc. The arcs are volumetrically insignificant, but important, in that they separate much larger tracts of, usually older, continental crust, often of different composition and geological history. The arcs were sutured to continental crust during arc–continent collisional events, which eventually resulted in the assembly of much of present-day Australia. The arcs, thus, indicate lost oceanic crust. The recognition of island arcs in the ancient rock record indicates that subduction processes, similar in many ways to modern day processes at convergent plate margins, were operating on Earth by at least 3100 Ma ago.  相似文献   

11.
The origin of bedded iron-ore deposits developed in greenstone belt-hosted (Algoma-type) banded iron formations of the Archean Pilbara Craton has largely been overlooked during the last three decades. Two of the key problems in studying these deposits are a lack of information about the structural and stratigraphic setting of the ore bodies and an absence of geochronological data from the ores. In this paper, we present geological maps for nearly a dozen former mines in the Shay Gap and Goldsworthy belts on the northeastern margin of the craton, and the first U-Pb geochronology for xenotime intergrown with hematite ore. Iron-ore mineralisation in the studied deposits is controlled by a combination of steeply dipping NE- and SE-trending faults and associated dolerite dykes. Simultaneous dextral oblique-slip movement on SE-trending faults and sinistral normal oblique-slip movement on NE-trending faults during initial ore formation are probably related to E–W extension. Uranium–lead dating of xenotime from the ores using the sensitive high-resolution ion microprobe (SHRIMP) suggests that iron mineralisation was the cumulative result of several Proterozoic hydrothermal events: the first at c. 2250 Ma, followed by others at c. 2180 Ma, c. 1670 Ma and c. 1000 Ma. The cause of the first growth event is not clear but the other age peaks coincide with well-documented episodes of orogenic activity at 2210–2145 Ma, 1680–1620 Ma and 1030–950 Ma along the southern margin of the Pilbara Craton and the Capricorn Orogen farther south. These results suggest that high-grade hematite deposits are a product of protracted episodic reactivation of a structural architecture that developed during the Mesoarchean. The development of hematite mineralisation along major structures in Mesoarchean BIFs after 2250 Ma implies that fluid infiltration and oxidative alteration commenced within 100 myr of the start of the Great Oxidation Event at c. 2350 Ma.  相似文献   

12.
Several iron-ore deposits hosted within Mesoarchean banded iron formations (BIFs) are mined throughout the North Pilbara Craton, Western Australia. Among these, significant goethite±martite deposits (total resources >50 Mt at 55.8 wt% Fe) are distributed in the Wodgina district within 2 km of the world-class pegmatite-hosted, tantalum Wodgina deposits. In this study, we investigate the dominant controls on iron mineralisation at Wodgina and test the potential role of felsic magma-derived fluids in early alteration and upgrade of nearby BIF units. Camp-scale distribution and geochemistry of iron ore at Wodgina argue against any significant influence of identified felsic intrusions in the upgrade of BIF. Whereas, the formation of BIF-hosted goethite±martite iron ore at Wodgina involves: (i) early (ca 2950 Ma) metamorphism of BIF causing camp-scale recrystallisation of pre-existing iron oxides to form euhedral magnetite, with local enrichment to sub-economic grades (~40 wt% Fe) within or proximal to metre-wide, bedding-parallel shear zones, and (ii) later supergene lateritic enrichment of the magnetite-bearing BIF and shear zones, forming near-surface goethite±martite ore. The supergene alteration sequence includes: (i) downward progression of the oxidation front and replacement of magnetite by martite, (ii) local development of silcrete at ~40 m below the modern surface caused by the lowering of the water-table, (iii) intensive replacement of quartz by goethite, resulting in the goethite±martite ore bodies at Wodgina, and (iv) late formation of ferricrete and ochreous goethite. Goethitisation most likely took place within the hot and very wet climate that prevailed from the Paleocene to the mid-Eocene. Goethite precipitation was accompanied by the incorporation of trace elements P, Zn, As, Ni and Co, which were likely derived from supergene fluid interaction with nearby shales. Enrichment of these elements in goethite-rich ore indicates that they are potentially useful pathfinder elements for concealed ore bodies covered by trace element-depleted pedogenic silcrete and siliciclastic rocks located throughout the Wodgina mine.  相似文献   

13.
国内外铁矿石价格对标基准多采用离岸价或到岸价,而非盈亏平衡运营成本,难以揭示我国铁矿石所面对的真实市场承压价格。为了厘清国际一线生产商的铁矿石盈亏平衡运营成本价格,本文对世界上最重要的条带状铁建造(BIF)矿产地——西澳哈默斯利盆地高品位赤铁矿矿床的矿化特征及代表性铁矿石产品展开系统研究,同时引入巴西铁四角地区的铁英岩型赤铁矿矿石作为对照,分析全球典型高品位赤铁矿矿石经济指标。结合前人研究成果,将西澳哈默斯利盆地与BIF相关的高品位赤铁矿的富集矿化类型划分为假象赤铁矿-针铁矿、微板状赤铁矿与河道沉积型赤铁矿,巴西铁四角主要为铁英岩型赤铁矿。上述各矿化类型对应的铁矿石产品的铁元素含量均高于56%;在杂质元素含量上,假象赤铁矿-针铁矿的磷含量高,微板状赤铁矿的磷、硫含量较高,河道沉积型赤铁矿的磷、硫含量较低,铁英岩型赤铁矿含锰。经定量估算,西澳力拓、必和必拓、FMG和巴西淡水河谷的铁矿石盈亏平衡运营成本价格分别为34.66、36.76、47.35、38.07美元/干吨,可为中国海外权益铁矿项目开发提供运营成本的参考。  相似文献   

14.
High-grade fault-hosted manganese deposits at the Woodie Woodie Mine, East Pilbara, are predominantly hydrothermal in origin with a late supergene overprint. The dominant manganese minerals are pyrolusite, braunite, and cryptomelane. The ore bodies are located on, or near the unconformities between the Neoarchean Carawine Dolomite and the Paleoproterozoic Pinjian Chert breccia (weathering product of Carawine Dolomite), and sedimentary units of the overlying ca 1300–1100 Ma Manganese Group. Stratabound manganese is typically located above or adjacent to steep fault-hosted manganese. The ore bodies range in size from 0.2 to 5.5 Mt with an average of 0.5 Mt. Historically, over 35 Mt of manganese has been mined at Woodie Woodie, and current ore resources are 29.94 Mt at 39.94% Mn, 6.96% Fe (resource and reserves statement, June 2011, Consolidated Minerals Pty Ltd).Manganese mineralization at Woodie Woodie is related to northwest–southeast directed extension and basin formation during the Mesoproterozoic. Basin architecture is generally well preserved and major manganese occurrences are localised along growth faults which down-throw the Pinjian Chert Breccia into local extensional basins. Manganese ore bodies are typically located on steep 2nd and 3rd order structures that extend off the major growth faults. Mineralized structures display a dominant northeast-trend reflecting the direction of maximum dilation during northwest–southeast extension.A paragenetic sequence is identified for the manganese ore at Woodie Woodie, with early hydrothermal braunite–pyrolusite–cryptomelane–todorokite–hausmannite, overprinted by late supergene oxides. Preliminary fluid inclusion studies in quartz crystals intergrown with pyrolusite and cryptomelane indicate that primary and pseudosecondary inclusions display a range of salinities from 1 to 18 eq. wt.% NaCl and trapping temperatures estimated to be from 220º to 290º at 1 kbar pressure.A lead–manganese oxide (coronadite) is common in manganese ores at Woodie Woodie, and Pb-isotope studies of 40 lead-rich ore samples from 16 pits indicate mineralization occurred within an age range of 955–1100 Ma. A mixed source is suggested for the lead, but was predominantly basalts and/or volcanogenic sedimentary units (e.g., Jeerinah Formation) of the ca 2700 Ma Fortescue Group. The typically high Mn:Fe ratios and enrichment in elements such as Pb, As, Cu, Mo, Zn are consistent with a dominantly hydrothermal origin for the manganese at Woodie Woodie. Supergene manganese is distinguished from hypogene manganese by a marked enrichment in REE in the supergene manganese.An early structural framework, established during Neoarchean rifting, provides a major structural control on manganese ore distribution. The Woodie Woodie mine corridor is located in a zone of oblique strike-slip extension on major northwest-trending transform faults and north-trending oblique normal faults. A major transform structure at the southern end of the Woodie Woodie mine corridor (Jewel-Southwest Fault Zone) likely acted as a major fluid conduit for manganese-bearing hydrothermal fluids and this would account for the concentration of significant manganese ore occurrences to the north and south of this structure.  相似文献   

15.
The Huoqiu iron ore field in northwest Anhui Province is located in the North China Craton (NCC). As a large banded iron formation (BIF) iron ore field, ore bodies occur in a middle-high grade of Neoarchean metamorphic formation, forming a banded silicon–iron series from north to south. The main ore bodies can be divided into two sub-belts from bottom to upper layers, i.e. the A + B ore belt consisting of leptynite–schist–magnetite–quartz formation, and the D ore belt consisting of schist–marble–hematite–quartz formation. Based on a dataset from geological settings, geophysical and geochemical exploration, ore-forming conditions and structural analysis of the iron deposit, we discuss structural types, sedimentary environments, deep tectonic and ore-controlling factors as well as characteristics and distribution of this colossal BIF ore field in the Huoqiu region.Using LA-ICP-MS techniques, we obtained the oldest U–Pb age of ca. 2.7 Ga for plagioclase amphibolite as its original rock, and 1.8 Ga for magmatic granite in the Huoqiu Group. The Hf isotopes of zircon were also determined, resulting in the oldest Hf model age of 3.5 Ga.Geochemical data indicate that the protolithes of amphibolites belong to a series of subalkaline rocks with enrichments of large ion lithophile elements and depletions of high field strength elements, which are typical volcanic arc rocks. The amphibolites have low K2O concentrations with low ratios of Ti/V (22.7 to 25.9 averaging 24.5), similar to island arc tholeiite. This suggests that the iron deposit and BIF are of the Superior type in the Huoqiu region.  相似文献   

16.
The Nkout deposit is part of an emerging iron ore province in West and Central Africa. The deposit is an oxide facies iron formation comprising fresh magnetite banded iron formation (BIF) at depth, which weathers and oxidises towards the surface forming caps of high grade hematite/martite–goethite ores. The mineral species, compositions, mineral associations, and liberation have been studied using automated mineralogy (QEMSCAN®) combined with whole rock geochemistry, mineral chemistry and mineralogical techniques. Drill cores (saprolitic, lateritic, BIF), grab and outcrop samples were studied and divided into 4 main groups based on whole rock Fe content and a weathering index. The groups are; enriched material (EM), weathered magnetite itabirite (WMI), transitional magnetite itabirite (TMI) and magnetite itabirite (MI). The main iron minerals are the iron oxides (magnetite, hematite, and goethite) and chamosite. The iron oxides are closely associated in the high grade cap and liberation of them individually is poor. Liberation increases when they are grouped together as iron oxides. Chamosite significantly lowers the liberation of the iron oxides. Automated mineralogy by QEMSCAN® (or other similar techniques) can distinguish between Fe oxides if set up and calibrated carefully using the backscattered electron signal. Electron beam techniques have the advantage over other quantitative mineralogy techniques of being able to determine mineral chemical variants of ore and gangue minerals, although reflected light optical microscopy remains the most sensitive method of distinguishing closely related iron oxide minerals. Both optical and electron beam automated mineralogical methods have distinct advantages over quantitative XRD in that they can determine mineral associations, liberation, amorphous phases and trace phases.  相似文献   

17.
A typical Algoma-type banded iron formation (BIF) occurs in Orvilliers, Montgolfier, and Aloigny townships in the Abitibi Greenstone belt, Quebec, Canada. The BIF is composed of millimeter to decimeter thick beds of alternating fine-grained, dark gray to black, well laminated, magnetite-rich (and/or hematite) beds and quartz–feldspar metasedimentary (graywacke) beds. The BIF is well defined by magnetic anomalies. These BIF layers are commonly associated with decimeter to meter thick horizons of metasedimentary rocks and mafic to intermediate volcanic rocks, which are locally crosscut by dikes of felsic or mafic intrusive rocks and, as well, narrow dikes of lamprophyre. The upper and lower contacts of the BIF are gradational with the adjacent graywacke. All geological units in the area are metamorphosed to the greenschist facies of regional metamorphism. Magnetite is mainly associated with subordinate amounts of hematite, quartz, Na-rich plagioclase, and muscovite. The fine-grained magnetite content is composed of 77% to 89% of the principal iron oxide minerals present. The magnetite occurs as disseminated idiomorphic to sub-idiomorphic small crystals, which average 20 μm ± 5 μm in size. Hematite is the second most abundant iron oxide mineral. Although less abundant, red jasper occurs in cherty horizons with strongly folded fragments and within fault zones. This particular Algoma-type iron formation stratigraphically extends more than 36 km along strike. It dips sub-vertically with a true width from 120 m to 600 m. The origin of the BIF is closely linked to regionally extensive submarine hydrothermal activity associated with the emplacement of volcanic and related subvolcanic rocks in an Archean greenstone belt.  相似文献   

18.
The Morro dos Seis Lagos niobium deposit (2897.9 Mt at 2.81 wt% Nb2O5) is associated with laterites formed by the weathering of siderite carbonatite. This iron-rich lateritic profile (>100 m in thickness) is divided into six textural and compositional types, which from the top to the base of the sequence is: (1) pisolitic laterite, (2) fragmented laterite, (3) mottled laterite, (4) purple laterite, (5) manganiferous laterite, and (6) brown laterite. All the laterites are composed mainly of goethite (predominant in the lower and upper varieties) and hematite (predominant in the intermediate types, formed from goethite dehydroxylation). The upper laterites were reworked, resulting in goethite formation. In the manganiferous laterite (10 m thick), the manganese oxides (mainly hollandite, with associated cerianite) occur as veins or irregular masses, formed in a late event during the development of the lateritic profile, precipitated from a solution with higher oxidation potential than that for Fe oxides, closer to the water table. Siderite is the source for the Mn. The main Nb ore mineral is Nb-rich rutile (with 11.26–22.23 wt% Nb2O5), which occurs in all of the laterites and formed at expense of a former secondary pyrochlore, together with Ce-pyrochlore (last pyrochore before final breakdown), Nb-rich goethite and minor cerianite. The paragenesis results of lateritization have been extremely intense. Minor Nb-rich brookite formed from Nb-rich rutile occurs as broken spherules with an “oolitic” (or Liesegang ring structure). Nb-rich rutile and Nb-rich brookite incorporate Nb following the [Fe3+ + (Nb, Ta) for 2Ti] substitution and both contain up to 2 wt% WO3. The laterites have an average Nb2O5 content of 2.91 wt% and average TiO2 5.00 wt% in the upper parts of the sequence. Average CeO2 concentration increases with increasing depth, from 0.12 wt% in the pisolitic type to 3.50 wt% in the brown laterite. HREE concentration is very low.  相似文献   

19.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. Three types of metamorphic wallrocks interbedded with the BIF bands are identified, including plagioclase gneisses and leptynites, garnet-bearing gneisses and amphibolites. Protolith reconstruction suggests that the protoliths of the plagioclase gneisses and leptynites are mainly graywackes with minor contribution of pelitic materials, the garnet-bearing gneisses are Fe-rich pelites contaminated by clastics, and the amphibolites are tholeiitic rocks. Trace elements of La, Th, Sc and Zr of the plagioclase gneisses and leptynites and the garnet-bearing gneisses support that these meta-sedimentary rocks were probably derived from recycling of Archean rocks with felsic and mafic materials differentiated into different rock types. 207Pb/206Pb ages of detrital zircons from the meta-sedimentary rocks concentrate at 2.7–3.0 Ga, confirming their derivation from the Archean rocks. The presence of several Paleoproterozoic detrital zircons (2240 to 2246 Ma), however, also suggests minor involvement of Paleoproterozoic materials. The Archean detrital zircons have εHf(t) values varying from − 0.7 to 7.6, which mainly fall between the 3.0 Ga and 3.3 Ga average crustal evolution lines on the age vs. εHf(t) diagram, further illustrating that the rocks providing materials for the meta-sedimentary rocks mainly originated from partial melting of a Mesoarchean crust. This is strongly supported by their crust-like trace element distribution patterns (such as Nb, Ta, P and Ti depletion) and ancient Nd depleted mantle model ages (TDM = 2.9–3.4 Ga). In addition, the remarkably high εHf(t) values (7.5 to 9.3) of the Paleoproterozoic detrital zircons constrain the Paleoproterozoic materials to originate from a depleted mantle. The amphibolites show low SiO2 (46.5 to 52.8 wt.%) and high MgO (5.68 to 10.9 wt.%) contents, crust-like trace element features and low εNd(t) values (− 4.5 to − 0.3), suggesting that these ortho-metamorphic rocks were mainly derived from subcontinental lithospheric mantle with some contamination by Archean crustal materials. Since an intra-continental environment was required for the formation of the above metamorphic rocks, these rocks not only confine the depositional environment of the Changyi BIF to be an intra-continental rift, but also support the rifting processes of the eastern NCC during Paleoproterozoic.  相似文献   

20.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号