首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
The seasonal variation of rainy season over the Tibetan Plateau in summer 1998 is analyzed byusing daily observational rainfall data for Lhasa from 1955 to 1996,and rainfall data at 70 stationsfrom January to August of 1998 over the Tibetan Plateau (TP) and adjacent regions,as well asTBB data from May to August of 1998.The onset date of rainy season for Lhasa is climatologically6 June.Among the analyzed years,the earliest onset date is 6 May,while the latest may delay to2 July.The obvious inter-decadal variation can be found in the series of onset date.The onset dateof summer 1998 over middle TP (onset date of Lhasa) is 24 June,which is relatively later than thenormal case.The onset for rainy season of 1998 started over southeast and northeast parts of TP and thenpropagated westward and northward.The convection over east and west parts of TP shows thatthere is a quasi 12-15 day oscillation.In June,the convection over middle and lower reaches ofYangtze River is formed by the westward propagation of convection over subtropical westernPacific.while in July.it is formed by the eastward propagation of convection over TP.Besides,it is also found that there exists good negative and obvious advance and lagcorrelation between the convection over the middle and western TP and that over the subtropicalwestern Pacific and southern China.Therefore it can be inferred that a feedback zonal circulationwith a quasi two-three week oscillation exists between the ascending region of TP and descendingregion of subtropical western Pacific,i.e.the convection over TP may affect the subtropical highover western Pacific and vice versa.  相似文献   

2.
利用98’TIPEX实验资料、1998年5-8月青藏高原6个自动热量平衡站(AWS)资料、青藏高原常规观测资料、中国300多个站的逐日降水资料、国家卫星中心接收的1998年5-8月OLR和日本GMS的TBB资料,研究了1998年5-8月青藏高原及其邻近地区逐日地面总热源的季节变化特征及其与西太平洋副热带地区对流的关系。结果表明:高原地面总热源与高原雨季开始有密切关系,高原雨季开始以后,高原平均的地面总热源明显减小;高原平均的地面总热源与20—30°N附近的西太平洋副热带地区的TBB有很好的负相关关系,表明高原地面总热源可以通过某种机制影响副热带地区的对流。  相似文献   

3.
The extremely heavy Meiyu in the middle and lower reaches of the Yangtze River in 2020 features early beginning, extremely late retreat, long duration, and a dramatic north-south swing rain belt. It can be divided into three phases. The key point of the extremely heavy Meiyu is the long duration of precipitation. The physical mechanism of the phased variation is researched here by analyzing the phased evolution of atmospheric circulation, the thermal effect of Tibetan Plateau, the sea surface temperature anomalies (SSTA), and tropical convection. The results show that: (1) Throughout the whole Meiyu season, the western Pacific subtropical high (WPSH) is stronger and westward, the South Asian high (SAH) is stronger and eastward, and blocking highs are very active with different patterns at different stages; they all form flat mid-latitude westerlies with fluctuation interacting with WPSH and SAH, causing their ridges and the rain belt to swing drastically from north to south or vice versa. (2) The higher temperatures in the upper and middle atmosphere in the eastern and southern Tibetan Plateau and the middle and lower reaches of the Yangtze River, which are produced by the warm advection transport, the heat sources in Tibetan Plateau, and the latent heat of condensation of Meiyu, contribute greatly to the stronger and westward WPSH and the stronger and eastward SAH. The dry-cold air brought by the fluctuating westerlies converges with the warm-humid air over Tibetan Plateau, resulting in precipitation, which in turn enhances the heat source of Tibetan Plateau and regulates the swings of WPSH and SAH. (3) Different from climatological analysis, real-time SSTA in the Indian Ocean has no obviously direct effect on WPSH and Meiyu. The anomalous distribution and phased evolution process of real-time SSTA in South China Sea and the tropical western Pacific affect WPSH and Meiyu significantly through tropical convection and heat sources. The maintenance of strong positive SSTA in the western equatorial Pacific is a critical reason for the prolonged Meiyu season. Both the onset and the retreat of Meiyu in 2020 are closely related to the intensified positive SSTA and corresponding typhoons on the ocean east of the Philippines.  相似文献   

4.
利用1981—2000年候平均NCEP/NCAR再分析资料和CMAP全球降水资料,分析了从中国东部大陆到西太平洋副热带地区季风和降水季节变化的特征及其与热带季风降水的关系,探讨了季风建立和加强的原因。夏季东亚—西太平洋盛行的西南风开始于江南和西太平洋副热带的春初,并向北扩展到中纬度,热带西南风范围向北扩展的迹象不明显。从冬到夏,中国西部和西太平洋副热带的表面加热季节变化可以使副热带对流层向西的温度梯度反转比热带早,使西南季风在副热带最早开始;从大气环流看,青藏高原东侧低压槽的加强和向东延伸,以及西太平洋副热带高压的加强和向西移动,都影响着副热带西南季风的开始和发展;初夏江南的南风向北扩展与副热带高压向北移动有关,随着高原东侧低压槽向南延伸,槽前的偏南风范围向南扩展。随着副热带季风建立和向北扩展,其最大风速中心前方的低层空气质量辐合和水汽辐合以及上升运动也加强和向北移动,导致降水加强和雨带向北移动。热带季风雨季开始晚,主要维持在热带而没有明显进入副热带,江淮梅雨不是由热带季风雨带直接向北移动而致,而是由春季江南雨带北移而致。在热带季风爆发前,副热带季风区水汽输送主要来自中南半岛北部和中国华南沿海,而在热带季风爆发后,水汽输送来自孟加拉湾和热带西太平洋。  相似文献   

5.
Using the NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) reanalysis and the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP)during 1981-2000, we investigated the seasonal evolution of the southwesterly wind and associated precipitation over the eastern China-subtropical western North Pacific area and its relationship with the tropical monsoon and rainfall, and analyzed the reasons responsible for the onset and development of the wind. It was found that the persistent southwesterly wind appears over southern China and the subtropical western Pacific the earliest in early spring, and then expands southwards to the tropics and advances northward to the midlatitudes. From winter to summer, the seasonal variation of surface heating over western China and the subtropical western Pacific may result in an earlier reversal of the westward tropospheric temperature gradient over the subtropics relative to the tropics, which may contribute to the earliest beginning of the subtropical southwesterly wind. Additionally, the strengthening and eastward expanding of the trough near the eastern Tibetan Plateau as well as the strengthening and westward moving of the western Pacific subtropical high also exert positive influences on the beginning and development of the subtropical southwesterly wind.In early summer,the northward expansion of the southwesterly wind over southern China is associated with a northward shift of the subtropical high, while the southward stretch of the southwesterly wind is associated with a southward stretch of the trough in the eastern side of the plateau. With the beginning and northward expansion of the subtropical southwesterly wind (namely southwest monsoon), convergences of the low-level air and water vapor and associated upward motion in front of the strongest southwesterly wind core also strengthen and move northward, leading to an increase in rainfall intensity and a northward shift of the rain belt. Accordingly, the subtropical rainy season occurs the earliest over southern China in spring, moves northward to the Yangtze-Huaihe River valley in early summer, and arrives in North China in mid summer.Compared with the subtropical rainy season, the tropical rainy season begins later and stays mainly over the tropics, not pronouncedly moving into the subtropics. Clearly, the Meiyu rainfall over the Yangtze-Huaihe River valley in early summer results from a northward shift of the spring rain belt over southern China,instead of a northward shift of the tropical monsoon rain belt. Before the onset of the tropical monsoon,water vapor over the subtropical monsoon region comes mainly from the coasts of the northern Indo-China Peninsula and southern China. After the onset, one branch of the water vapor flow comes from the Bay of Bengal, entering into eastern China and the subtropical western Pacific via southwestern China and the South China Sea, and another branch comes from the tropical western North Pacific, moving northwestward along the west edge of the western Pacific subtropical high and entering into the subtropics.  相似文献   

6.
该文首先采用合成分析的方法研究了江淮入梅前后大尺度大气环流的演变特征和西太平洋副热带高压西伸北跳的可能机制。研究结果表明, 江淮入梅前期的最显著的特征是:副热带高压首先在太平洋中部增强北跳, 而后向西扩展导致太平洋副高西部脊 (120°E) 的增强北跳。进一步分析表明, 在太平洋中部副热带高压的增强北跳和西伸之前, 副热带高压南侧ITCZ中对流和孟加拉湾北部的对流活动明显并且都经历了一次增强活跃过程, 这意味着热带ITCZ和孟加拉湾北部对流的异常活跃可能对副热带高压的增强北跳西伸产生影响。全球大气环流模式模拟结果表明, 赤道中太平洋ITCZ中对流异常活跃不仅可导致副热带高压的增强北移, 而且还可导致副热带高压西伸, 与诊断分析结果相一致。  相似文献   

7.
青藏高原地表温度对华北汛期降水变化的影响   总被引:11,自引:4,他引:7  
余锦华  荣艳淑  任健 《气象科学》2005,25(6):579-586
利用1980-2001年青藏高原月平均地表温度、1961~2001年我国160站月降水以及NECP/NCAR再分析月平均高度场资料,分析了华北地区汛期降水与青藏高原地表温度的关系,结果表明华北地区汛期降水与青藏高原5~6月地表温度具有显著的正相关。相关场的正值中心位于高原的东北部和西南部地区。华北地区汛期降水偏少年,青藏高原前期5~6月地温以负距平为主且距平值较小;相反,降水偏多年,青藏高原前期5~6月地温以正距平为主且距平值较大。EOF和SVD分析表明,青藏高原5~6月地温和华北地区汛期降水的第一典型场都表现出大体一致的变化特点。此外,诊断分析得到,青藏高原5~6月地温偏高年,7~8月西太平洋副热带高压的强度偏强,位置偏北;地温偏低年,西太平洋副热带高压的强度偏弱,位置偏南。  相似文献   

8.
The propagation characteristics of the atmospheric low frequency (LF, 30--60 days) oscillation (LFO) around the Tibetan Plateau from troposphere to stratosphere and its relationship with the floods over the mid-lower reaches of the Yangtze River in the summer of 1998 are studied, based on the GAME dataset from Meteorological Research Institute (MRI)/Japan Meteorological Agency, the TRMM satellite rainfall and the 730-station precipitation over China. The results show that the zonal propagation direction of LFOs in horizontal winds varies with seasons in the troposphere during May to August in 1998. The eastward propagation of LFOs is remarkable before the start of the rainy season in the Tibetan Plateau and the eastern Asian continent, while the westward propagation is significant after the start date. The northward LFOs from the south side of the plateau and the southward LFOs from the north are both significant before and after the start date. The plateau is a LFO sink in the meridional and zonal directions, but the west part of it is an intensifying area for the continual westward LFOs only after the start of the rainy season. Besides, the strongest LFOs occur at the tropopause (100 hPa) and rapidly decay after entering the stratosphere. The rainfall over the mid-low reaches of Yangtze River in the summer of 1998 exhibits two LFO cycles. According to the phases of the two rainfall LFO cycles, the composite analysesof precipitation distribution, LF circulations at 500 and 100 hPa,and LF vertical motion along 30°N are performed. It is the joint effect of the mid-upper tropospheric strong 30--60-day filtered cyclone (anticyclone) over the eastern plateau and the LFO anticyclone (cyclone) over the west subtropical Pacific that induces the whole layer LF descending (ascending) motion over the mid-lower reaches of Yangtze River, which provides the favorable condition for the break (maintenance) of precipitation.  相似文献   

9.
ON THE PROCESS OF SUMMER MONSOON ONSET OVER EAST ASIA   总被引:6,自引:0,他引:6  
Using daily observational rainfall data covered 194 stations of China from 1961 to 1995 andNCEP model analyzed pentad precipitation data of global grid point from 1979 to 1997,thedistribution of onset date of rainy season over Asian area from spring to summer is studied in thispaper.The analyzed results show that there exist two stages of rainy season onset over East Asianregion from spring to summer rainy season onset accompanying subtropical monsoon and tropicalmonsoon respectively.The former rain belt is mainly formed by the convergence of cold air and therecurred southwesterly flow from western part of subtropical high and westerly flow from the so-called western trough of subtropical region occurring during winter to spring over South Asia.Thelatter is formed in the process of subtropical monsoon rain belt over inshore regions of South ChinaSea originally coming from south of Changjiang (Yangtze) River Basin advancing with northwardshift of subtropical high after the onset of tropical monsoon over South China Sea.The pre-floodrainy season over South China region then came into mature period and the second peak of rainfallappeared.Meiyu,the rainy season over Changjiang-Huaihe River Basin and North China thenformed consequently.The process of summer tropical monsoon onset over South China Sea in 1998is also discussed in this paper.It indicated that the monsoon during summer tropical monsoononset over South China Sea is the result of the westerly flow over middle part of South China Sea,which is from the new generated cyclone formed in north subtropical high entering into SouthChina Sea,converged with the tropical southwesterly flow recurred by the intensified cross-equatorial flow.  相似文献   

10.
Using daily observational rainfall data covered 194 stations of China from 1961 to 1995 and NCEP model analyzed pentad precipitation data of global grid point from 1979 to 1997,the distribution of onset date of rainy season over Asian area from spring to summer is studied in this paper.The analyzed results show that there exist two stages of rainy season onset over East Asian region from spring to summer rainy season onset accompanying subtropical monsoon and tropical monsoon respectively.The former rain belt is mainly formed by the convergence of cold air and the recurred southwesterly flow from western part of subtropical high and westerly flow from the so-called western trough of subtropical region occurring during winter to spring over South Asia.The latter is formed in the process of subtropical monsoon rain belt over inshore regions of South China Sea originally coming from south of Changjiang (Yangtze) River Basin advancing with northward shift of subtropical high after the onset of tropical monsoon over South China Sea.The pre-flood rainy season over South China region then came into mature period and the second peak of rainfall appeared.Meiyu,the rainy season over Changjiang-Huaihe River Basin and North China then formed consequently.The process of summer tropical monsoon onset over South China Sea in 1998 is also discussed in this paper.It indicated that the monsoon during summer tropical monsoon onset over South China Sea is the result of the westerly flow over middle part of South China Sea,which is from the new generated cyclone formed in north subtropical high entering into South China Sea,converged with the tropical southwesterly flow recurred by the intensified cross-equatorial flow.  相似文献   

11.
青藏高原春夏季对流异常及其对西太平洋副高的影响   总被引:6,自引:2,他引:4  
高原冬春季净辐射多寡可以显著影响高原地区大气环流季节转换进程和后期高原对流活动。净辐射偏多,初夏高原同低纬度之间温度梯度反转时间提前,高原对活跃,夏季高原主体对流异常,可以通过辐散环流造成西太平洋异常的下沉运动,影响副高的强度、南北位置和西伸程度,最终导致夏季降水的异常分析。  相似文献   

12.
The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu(i.e.,the East Asian rainy season in June) and the related tropical convection were investigated.During the both flooding cases,although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere,the phase of the Rossby wave train is different over Eurasian continent.During flooding in the Huaihe River valley,only one single blocking anticyclone is located over Baikal Lake.In contrast,during flooding in the Yangtze River valley,there are two blocking anticyclones.One is over the Ural Mountains and the other is over Northeast Asia.In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific(SAWP) in both flooding cases,but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding.Furthermore,abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula.However,the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific.Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation;and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation.While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south,along with abundant rainfall.  相似文献   

13.
东亚地区夏季风爆发过程   总被引:72,自引:5,他引:67  
利用中国194站1961~1995年日降水资料及NCEP1979~1997年候格点降水资料,探讨了亚洲地区自春到夏的雨季开始分布。结果表明,东亚地区自春到夏存在副热带季风雨季开始和热带季风雨季开始。前者于4月初开始于华南北部和江南地区,随后向南和向西南扩展,于4月末扩展到华南沿海和中南半岛,这个雨带主要是冷空气和副热带高压西侧转向的SW风以及南亚地区冬春副热带南支西风槽中西风汇合而形成的,是副热带季风雨季开始。后者是南海热带季风爆发后使原来由江南移到华南沿岸的副热带季风雨带随副热带高压北进而北进,前汛期雨季进入盛期,江南出现第二次雨峰,形成梅雨期和江淮及华北雨季。同时,热带季风雨带也自东向西传播到达南亚地区而形成热带季风雨季。还讨论了1998年东亚地区夏季风爆发过程,指出南海夏季风爆发期的季风由副高北侧形成的新生气旋进入南海造成南海中部西风和南海越赤道气流转向的SW季风加强汇合而形成,因而是东亚季风系统中环流系统季节变化造成的,和印度季风无关。在南海季风爆发期阿拉伯海仍由副热带反气旋控制,南亚仍是上述副热带反气旋北侧NW风南下后转向的偏西副热带气流所控制,索马里低空急流仍未爆发,赤道西风并未影响南海。  相似文献   

14.
1INTRODUCTIONInsummarizingclimotologicalfactorsforprecipitationintherainingseasonsofChina,Lietal.presentedfiveanomaliesthatcouldaffecttheseasonalprecipitation,namely,SSTintheequatorialeasternPacific,thermalconditionsovertheQinghai-TibetanPlateau,Asianmonsoon,mid-latitudeblockinghighandWestPacificsubtropicalhigh.NotonlysubjecttothedirecteffectofmaritimethermalconditionsoftheWestPacific,thesubtropicalhighisalsoinfluencedbythegeneralcirculationandunderlyingsurfacefromtheotherfourfactors…  相似文献   

15.
利用Hadley中心提供的逐月海温资料、ERA-Interim再分析资料以及NOAA(National Oceanic and Atmospheric Administration)的逐月向外长波辐射(OLR)资料探讨了1979~2011年夏季青藏高原“湿池”的水汽含量与前期印度洋海温异常的关系,并对可能的原因进行了分析。结果表明,夏季青藏高原水汽(去趋势)EOF第二模态与前期印度洋海温存在密切的正相关,前期3~4月关键区(5°S~20°N,45°E~75°E)的海温异常可以作为夏季高原水汽的预测信号。在暖水年,赤道附近显著的东风异常对夏季高原水汽输送起到了至关重要的作用。500 hPa上副热带高压显著增强并西移,600 hPa上赤道附近为显著的异常东风,将水汽从西太平洋、南海、孟加拉湾向西输送到印度半岛,并在异常反气旋环流西侧的南风作用下,将水汽带向青藏高原。高层风场上,西太平洋地区辐合,青藏高原上空辐散。以上环流形势表明暖水年夏季青藏高原水汽偏多;冷水年则相反。就影响机制而言,前期春季印度洋海温显著偏暖,引起其上空异常的对流上升运动,驱动异常沃克环流从春到夏显著维持,副热带高压的季节性北跳和异常增强西移,有利于赤道东风异常的增强和西移,并经过水汽输送通道将水汽带向青藏高原上空。  相似文献   

16.
夏季南亚高压(SAH)中心呈青藏高原和伊朗高原双模态分布,表现为东—西振荡的形式。同时,SAH的东缘还存在规律性的向东亚地区东伸或西退至青藏高原,表现为另一种形式的东西振荡。本文利用NCEP1逐日再分析资料、APHRODITE逐日降水数据以及印度地区逐日降水数据,研究了SAH这两类东—西振荡的联系以及它们对亚洲地区环流和天气影响的差异。结果表明,SAH中心的双模态东—西振荡位相可显著影响其东缘东伸/西退的发生及其幅度。尽管在SAH中心呈青藏高原和伊朗高原模态时,均可以出现SAH东缘的向东亚东伸,但青藏高原模态下发生东伸的频率明显高于伊朗高原模态;在伊朗高原模态时则更容易出现SAH东缘的西退。而且,在青藏高原模态下发生的SAH东缘东伸的幅度也比伊朗高原模态时更大。进一步研究发现,SAH中心的双模态东—西振荡主要与印度北部及整个青藏高原地区的降水异常型密切联系,并与异常降水有关的热力和动力作用变化相耦合。而SAH东缘的东伸/西退则通过引起西太副高的西进/东退,与东亚地区偶极子型的降水异常(青藏高原中东部、长江与黄河之间的中下游地区的降水异常与长江以南地区的相反)相联系。此外,SAH中心为青...  相似文献   

17.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

18.
亚洲季风季节进程的若干认识   总被引:4,自引:0,他引:4  
简要归纳了不同时期随着观测资料的更新对亚洲季风季节进程的若干认识。南海季风试验前,研究认识了东亚季风系统与南亚季风系统的区别。南海季风试验后,对季风进程有了更多的认识,江南副热带雨季开始于4月初,中印半岛热带雨季开始于4月底,南海热带雨季突然建立于5月中旬,都具有半年际的干湿转换。南海中部季风爆发后,亚洲季风在南亚、青藏高原东侧和东亚-太平洋地区全面爆发并由南向北推进。利用近年来高分辨率资料并考虑热带地区半岛陆海地形与热力的影响,认识到亚洲存在5个夏季季风槽与降水相联系的系统,它们分别是西南亚(阿拉伯海)夏季热带季风、南亚(孟加拉湾)夏季热带季风、东南亚(南海)夏季热带季风、西北太平洋夏季热带季风和东亚夏季副热带季风。  相似文献   

19.
春季青藏高原大气热源与长江中下游盛夏高温的关系   总被引:1,自引:0,他引:1  
利用1961—2013年长江中下游地区盛夏(7—8月)日极端最高气温和NCEP/NCAR再分析逐日资料,分析了春季(4—5月)青藏高原大气热源特征,找到了影响长江中下游盛夏高温的热源关键区域,并就关键区大气热源对长江中下游盛夏高温的影响进行了诊断。结果表明:春季青藏高原主体中南部大气热源与长江中下游盛夏高温关系密切,当该区域大气热源偏弱(强),长江中下游盛夏高温日数偏多(少)的可能性大。当春季青藏高原关键区大气热源偏弱(强)时,春季南海到西太平洋暖池对流偏强(偏弱),南海上空为气旋性(反气旋性)异常环流,西太平洋副热带高压偏东(西),有利于南海夏季风爆发偏早(晚),往往有利于盛夏西太平洋副热带高压位置偏北(南),从而导致长江中下游盛夏高温日数偏多(偏少)。春季青藏高原关键区大气热源可以作为长江中下游盛夏高温的一个前期预报因子。  相似文献   

20.
2011年长江中下游旱涝急转成因初步分析   总被引:2,自引:0,他引:2  
以2011年1~6月长江中下游"旱涝急转"事件为例,研究了长江中下游旱涝急转与大尺度环流和海温异常的关系,初步得到以下引发旱涝急转的原因:(1)中高纬度大气环流出现快速调整,迅速由强冬季风形势调整为两槽一脊环流形势所控制,进而造成长江中下游由受中高纬度系统控制转变为冷暖空气对峙之地;(2)西太平洋副热带高压位置和强度迅速调整,1~5月来自热带地区的水汽输送条件差,长江中下游地区水汽辐合较常年明显偏弱。6月,水汽输送和收支状况发生根本性转变,长江中下游表现为显著的水汽辐合中心,且明显强于常年;(3)6月青藏高原上空存在显著的气旋性异常环流,利于对流活动发展,受其底部异常西风的影响,对流活动频繁地东传至长江中下游地区,增强了梅雨锋的强度,先后引发了5次强降水过程;(4)前期持续的La Ni?a事件及其变化通过影响Walker环流、西太平洋副热带高压等大气环流系统,为旱涝急转事件的发生提供了有利的背景条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号