首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bismark deposit (8.5 Mt at 8% Zn, 0.5% Pb, 0.2% Cu, and 50 g/t Ag) located in northern Mexico is an example of a stock-contact skarn end member of a continuum of deposit types collectively called high-temperature, carbonate-replacement deposits. The deposit is hosted by massive sulfide within altered limestone adjacent to the Bismark quartz monzonite stock (~42 Ma) and the Bismark fault. Alteration concurrently developed in both the intrusion and limestone. The former contains early potassic alteration comprising K-feldspar and biotite, which was overprinted by kaolinite-rich veins and alteration and later quartz, sericite, and pyrite with minor sphalerite and chalcopyrite. Prograde exoskarn alteration in the limestone consists of green andradite and diopside, and transitional skarn comprising red-brown andradite, green hedenbergite and minor vesuvinite, calcite, fluorite, and quartz. The main ore stage post-dates calc-silicate minerals and comprises sphalerite and galena with gangue pyrite, pyrrhotite, calcite, fluorite, and quartz. The entire hydrothermal system developed synchronously with faulting. Fluid inclusion studies reveal several distinct temporal, compositional, and thermal populations in pre-, syn- and post-ore quartz, fluorite, and calcite. The earliest primary fluid inclusions are coexisting vapor-rich (type 2A) and halite-bearing (type 3A; type 3B contain sylvite) brine inclusions (32 to >60 total wt% salts) that occur in pre-ore fluorite. Trapping temperatures are estimated to have been in excess of 400 °C under lithostatic pressures of ~450 bar (~1.5 km depth). Primary fluid inclusions trapped in syn-ore quartz display critical to near critical behavior (type 1C), have moderate salinity (8.4 to 10.9 wt% NaCl equiv.) and homogenization temperatures (Th) ranging from 351 to 438 °C. Liquid-rich type 1A and 1B (calcite-bearing) inclusions occur as primary to secondary inclusions predominantly in fluorite and show a range in Th (104–336 °C) and salinity (2.7–11.8 wt% NaCl equiv.), which at the higher Th and salinity ranges overlap with type 1C inclusions. Oxygen isotope analysis was carried out on garnet, quartz, and calcite (plus carbon isotopes) in pre-, syn-, post-ore, and peripheral veins. Pre-ore skarn related garnets have a δ18Omineral range between 3.9 and 8.4‰. Quartz from the main ore stage range between 13.6 and 16.0‰. Calcite from the main ore stage has δ13C values of –2.9 to –5.1‰ and δ18O values of 12.3 to 14.1‰, which are clearly distinct from post-ore veins and peripheral prospects that have much higher δ18O (16.6–27.3‰) and δ13C (1.3–3.1‰) values. Despite the numerous fluid inclusion types, only two fluid sources can be inferred, namely a magmatic fluid and an external fluid that equilibrated with limestone. Furthermore, isotopic data does not indicate any significant mixing between the two fluids, although fluid inclusion data may be interpreted otherwise. Thus, the various fluid types were likely to have formed from varying pressure–temperature conditions through faulting during exsolution of magmatic fluids. Late-stage hydrothermal fluid activity was dominated by the non-magmatic fluids and was post-ore.  相似文献   

2.
The Nanyangtian skarn-type scheelite deposit is an important part of the Laojunshan W–Sn polymetallic metallogenic region in southeastern Yunnan Province, China. The deposit comprises multiple scheelite ore bodies; multilayer skarn-type scheelite ore bodies are dominant, with a small amount of quartz vein-type ore bodies. Skarn minerals include diopside, hedenbergite, grossular, and epidote. Three mineralization stages exist: skarn, quartz–scheelite, and calcite. The homogenization temperatures of fluid inclusions in hydrothermal minerals that formed in different paragenetic phases were measured as follows: 221–423 °C (early skarn stage), 177–260 °C (quartz–scheelite stage), and 173–227 °C (late calcite stage). The measured salinity of fluid inclusions ranged from 0.18% to 16.34% NaCleqv (skarn stage), 0.35%–7.17% NaCleqv (quartz–scheelite stage), and 0.35%–2.24% NaCleqv (late calcite vein stage). Laser Raman spectroscopic studies on fluid inclusions in the three stages showed H2O as the main component, with N2 present in minor amounts. Minor amounts of CH4 were found in the quartz–scheelite stage. It was observed that the homogenization temperature gradually reduced from the early to the late mineralization stages; moreover, δ13CPDB values for ore-bearing skarn in the mineralization period ranged from ? 5.7‰ to ? 6.9‰ and the corresponding δ18OSMOW values ranged from 5.8‰ to 9.1‰, implying that the ore-forming fluid was mainly sourced from magmatic water with a minor amount of meteoric water. Collectively, the evidence indicates that the formation of the Nanyangtian deposit is related to Laojunshan granitic magmatism.  相似文献   

3.
The Maoniuping REE deposit, located about 22 km to the southwest of Mianning, Sichuan Province, is the second largest light REE deposit in China, subsequent to the Bayan Obo Fe-Nb-REE deposit in the Inner Mongolia Autonomous Region. Tectonically, it is located in the transitional zone between the Panxi rift and the Longmenshan-Jinpingshan orogenic zone. It is a carbonatite vein-type deposit hosted in alkaline complex rocks. The bastnaesite-barite, bastnaesite-calcite, and bastnaesite-microcline lodes are the main three types of REE ore lodes. Among these, the first lode is distributed most extensively and its REE mineralization is the strongest. Theδ34Sv-CDT values of the barites in the ore of the deposit vary in a narrow range of +5.0 to +5.1‰in the bastnaesite-calcite lode and +3.3 to +5.9‰in the bastnaesite-barite lode, showing the isotopic characteristics of magma-derived sulfur. Theδ13Cv-PDB values and theδ518OV-SMOW values in the bastnaesite-calcite lode range from -3.9 to -6.9‰and from +7.3 to +9.7‰, respectively, which fall into the range of "primary carbonatites", showing that carbon and oxygen in the ores of the Maoniuping deposit were derived mainly from a deep source. Theδ13Cv-PDB values of fluid inclusions vary from -3.0 to -5.6‰, with -3.0 to -4.0‰in the bastnaesite-calcite lode and -3.0 to -5.6‰in the bastnaesite-barite lode, which show characteristics of mantle-derived carbon. TheδDv-SMOW values of fluid inclusions range from -57 to -88‰, with -63 to -86‰in the bastnaesite-calcite lode and -57 to -88‰in the bastnaesite-barite lode, which show characteristics of mantle-derived hydrogen. Theδ18OH2OV-SMOW values vary from +7.4 to +8.6‰in the bastnaesite calcite lode, and +6.7 to +7.8‰in the bastnaesite-barite lode, almost overlapping the range of +5.5 to +9.5‰for magmatic water. The 4He content, R/Ra ratios are (13.95 to 119.58×10-6 (cm3/g)STP and 0.02 to 0.11, respectively, and 40Ar/36Ar is 313±1 to 437±2. Considering the 4He increase caused by high contents of radioactive elements, a mantle-derived fluid probably exists in the inclusions in the fluorite, calcite and bastnaesite samples. The Maoniuping deposit and its associated carbonatite-alkaline complex were formed in 40.3 to 12.2 Ma according to K-Ar and U-Pb data. All these data suggest that large quantities of mantle fluids were involved in the metallogenic process of the Maoniuping REE deposit through a fault system.  相似文献   

4.
Farsesh barite in the central part of Iranian Sanandaj-Sirjan zone is a sample of epigenetic hydrothermal mineralization in dolomitized limestone, which provides appropriate chemicophysical conditions making the passage of mineral-bearing fluids possible. Barite veins may range from a few centimeters to 2 m in thickness that increases downward. The microthermometry measurements obtained from more than 30 fluid inclusions show relative homogenization temperatures ranging from 125 to 200 °C with an average of 110 °C for Farsesh barite deposits. The mean salinity measured proves 16 times as much as weight percentage of NaCl for barite. Coexistence of liquid- and vapor-rich fluid inclusions in barite minerals may provide an evidence of boiling in ore veins. Moreover, occurrence of bladed calcite, high-grade ore zones, and presence of hydrothermal breccia are all consistent with boiling. Thermometric studies indicate that homogenization temperatures (Th) for primary and pseudosecondary fluid inclusions in barite range from 125 to 200 °C with an average of 1,100 °C. The δ34S values of barite also lie between 8.88 and 16.6 %. The relatively narrow spread in δ34S values may suggest uniform environmental conditions throughout the mineralization field. Thus, δ34S values are lower than those of contemporaneous seawater, which indicates a contribution of magmatic sulfur to the ore-forming solution. Barite is marked by total amounts of rare Earth elements (REEs) (6.25–17.39 ppm). Moreover, chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (i.e., LREEs) from La to Sm, similar to those for barite from different origins. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in Farsesh deposit is enriched in LREEs compared with heavy rare Earth elements (HREEs). Similarity between Ce/La ratios in barite samples and those found in deep-sea barite supports its marine origin. Lanthanum and Gd exhibit positive anomalies, which are common features of chemical marine sediments. Cerium shows a negative anomaly in most samples inherited from the negative Ce anomaly of hydrothermal fluid that is mixed with seawater at barite precipitation. The available data including tectonic setting, host rock characteristics, REE geochemistry, and sulfur isotopic compositions may support a hydrothermal submarine origin for Farsesh barite deposit.  相似文献   

5.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

6.
Quartz from sandstone‐type uranium deposits in the east part of the Ordos Basin contains abundant secondary fluid inclusions hosted along sealed fractures or in overgrowths. These inclusions consist mainly of water with NaCl, KCl, CO2 (135–913 ppm) and trace amounts of CO (0.22–16.8 ppm), CH4 (0.10–1.38 ppm) and [SO4]2? (0.35–111 ppm). Homogenization temperatures of the studied fluid inclusions range from 90 to 210°C, with salinities varying from 0.35 to 12.6 wt‐% (converted to NaCl wt%), implying multiple stages of thermal alteration. Although high U is associated with a high homogenization temperature in one case, overall U mineralization is not correlated with homogenization temperature nor with salinity. The H and O isotopic compositions of fluid inclusions show typical characteristics of formation water, with δ18O ranging from 9.8 to 12.3‰ and δD from 26.9 to ?48.6‰, indicating that these fluid inclusions are mixtures of magmatic and meteoric waters. The oxygen isotope ratios of carbonates in cement are systematically higher than those of the fluid inclusions. Limited fluid inclusion‐cement pairs show that the oxygen closely approaches equilibrium between water and aragonite at 150°C. Highly varied and overall negative δ13C in calcite from cement implies different degrees of biogenetic carbon involvement. Correlations between U in bulk rocks and trace components in fluid inclusions are lacking; however, high U contents are typically coupled with high [SO4]2?, implying pre‐enrichment of oxidized materials in the U mineralization layer. All these relationships can be plausibly interpreted to indicate that U (IV), [SO4]2? as well as Na, K were washed out from the overlying thick sandstone by oxidizing meteoric water, and then were reduced by reducing agents, such as CH4 and petroleum, likely from underlying coal and petroleum deposits, and possibly also in situ microbes at low temperatures.  相似文献   

7.
Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from ?1.45 to ?2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between ?1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between ?15.42 and ?19.04‰. Barite which is associated with galena has significantly different δ34S values (?0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.  相似文献   

8.
MUCHEZ  NIELSEN  SINTUBIN  & LAGROU 《Sedimentology》1998,45(5):845-854
Two calcite cements, filling karst cavities and replacing Lower Carboniferous limestones at the Variscan Front Thrust, were precipitated after mid-Jurassic Cimmerian uplift and subsequent erosion but before late Cretaceous strike-slip movement. The first calcite (stage A) is nonferroan and crystals are coated by hematite and/or goethite. These minerals also occur as inclusions along growth zones. The calcite lattice contains < 0·07 mol.% Fe, but Mn concentrations can be as high as 0·72 mol.% in bright yellow luminescent zones. Primary, originally one-phase, all-liquid, aqueous inclusions have a final melting temperature between ?0·2° and +0·2 °C, indicating a meteoric origin of the ambient water. The δ13C and δ18O values of the calcites are between ?7·3‰ and ?6·3‰, ?7·8‰ and ?5·5‰ on the Vienna PeeDee Belemnite (VPDB) scale, respectively. The second calcite (stage B) consists of ferroan (0·13–0·84 mol.% Fe) blocky crystals with Mn concentrations between 0·34 and 0·87 mol.%. Primary, single-phase aqueous fluid inclusions indicate precipitation from a meteoric fluid below 50 °C . The δ13C values of stage B calcites vary between ?7·3‰ and ?2·1‰ VPDB and the δ18O values between ?7·9‰ and ?7·2‰ VPDB. A precipitation temperature below 50 °C for the stage A calcites and the presence of iron oxide/hydroxide inclusions in the crystals indicate near-surface precipitation conditions. Within this setting, the geochemistry of the nonferroan stage A calcites reflects precipitation under oxic to suboxic conditions. The ferroan stage B calcites precipitated in a reducing environment. The evolution from the stage A to stage B calcites and the associated geochemical changes are interpreted to be related to the change from semiarid to humid conditions in western Europe during late Jurassic–Cretaceous times. A change in humidity can explain the evolution of groundwater from oxic/suboxic to reducing conditions during calcite precipitation. The typically higher δ13C values of the stage B compared to the stage A calcites can be explained by a smaller contribution of carbon derived from soil-zone processes than from carbonate dissolution in the groundwater under humid conditions. The small shift to lower δ18O between stage A and B calcites may be caused by a higher precipitation temperature or a decrease in the δ18O value of the meteoric water. This decrease could have been caused by a change in the source of the air masses or by an increase in the amount of rainfall during the early mid-Cretaceous. Although the latter interpretation is preferred, it cannot be proven.  相似文献   

9.
We studied calcite and rhodochrosite from exploratory drill cores (TH‐4 and TH‐6) near the Toyoha deposit, southwestern Hokkaido, Japan, from the aspect of stable isotope geochemistry, together with measuring the homogenization temperatures of fluid inclusions. The alteration observed in the drill cores is classified into four zones: ore mineralized zone, mixed‐layer minerals zone, kaolin minerals zone, and propylitic zone. Calcite is widespread in all the zones except for the kaolin minerals zone. The occurrence of rhodochrosite is restricted in the ore mineralized zone associated with Fe, Mn‐rich chlorite and sulfides, the mineral assemblage of which is basically equivalent to that in the Toyoha veins. The measured δ18OSMOW and δ13CPDB values of calcite scatter in the relatively narrow ranges from ?2 to 5‰ and from ?9 to ?5‰, respectively; those of rhodochrosite from 3 to 9‰ and from ?9 to ?5‰, excluding some data with large deviations. The variation of the isotopic compositions with temperature and depth could be explained by a mixing process between a heated surface meteoric water (100°C δ18O =?12‰, δ13C =?10‰) and a deep high temperature water (300°C, δ18O =?5‰, δ13C =?4‰). Boiling was less effective in isotopic fractionation than that of mixing. The plots of δ18O and δ13C indicate that the carbonates precipitated from H2CO3‐dominated fluids under the conditions of pH = 6–7 and T = 200–300°C. The sequential precipitation from calcite to rhodochrosite in a vein brought about the disequilibrium isotopic fractionation between the two minerals. The hydrothermal fluids circulated during the precipitation of carbonates in TH‐4 and TH‐6 are similar in origin to the ore‐forming fluids pertaining to the formation of veins in the Toyoha deposit.  相似文献   

10.
Vein-type, structurally controlled Cu–Au mineralisation hosted by turbidites of late Silurian to earliest Devonian age, forms an important resource close to the eastern margin of the Cobar Basin. Here we report 103 new sulfur isotope analyses, together with homogenisation temperatures and salinity data for 545 primary two-phase fluid inclusions for the mineralised zones from the central area of the Cobar mining district. A range in δ34S values from 3.8 to 11.2‰ (average 7.9‰) is present. Sulfur is likely to have been derived from rock sulfur/sulfide in basin and basement rocks, but there may be an additional connate-derived component. Homogenisation temperatures (Th) for inclusion fluids trapped in quartz and minor calcite veins range from near 150°C to 397°C. Fluid inclusions are characterised by a low CO2 content and low, but variable salinities (2.1–9.1 wt% NaCl equivalent). Generations of inclusion fluids correspond to six paragenetic stages of vein quartz deposition and recrystallisation at the Chesney mine. Primary fluid inclusions in the first two stages were subjected to re-equilibration resulting from increased confining pressure. Their Th range (151–317°C) is considered a minimum for the temperature of these fluids. Sulfide and gold deposition at Chesney appears to be related to fluids of moderately high Th (range 270–397°C) associated with the final paragenetic stage. Th for the ore-related fluids may be close to the solvus of the H2O–NaCl–CO2 system and hence near trapping temperatures. Late-stage entry of a hot, moderately saline ore-forming fluid is implicated as the origin of the Cu–Au mineralisation. However, comparison with geochemical data for the vein-style Zn–Pb–Ag deposits at Cobar demonstrates that differences in metal content for individual zones cannot be attributed to major differences in fluid temperature or salinity. Rather, these differences are probably due to variations in source-rock reservoirs and structural pathways along which the ore-forming fluids moved.  相似文献   

11.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

12.
Ubiquitous post-Variscan dolomites occur in Zn–Pb–Cu veins at the Nízký Jeseník Mountains and the Upper Silesian Basin (Lower and Upper Carboniferous siliciclastics at the eastern part of the Bohemian Massif). Crush–leach, stable isotope (oxygen and carbon) and microthermometry analysis of the fluid inclusions in dolomites enable understanding the geochemistry, origin and possible migration pathways of the fluids. Homogenisation temperatures of fluid inclusions range between 66 and 148°C, with generally higher temperatures in the Nízký Jeseník Mountains area than in the Upper Silesian Basin. The highest homogenisation temperatures (up to 148°C) have been found near major regional faults and the lowest in a distant position or at higher stratigraphic levels. Highly saline (16.6–28.4 eq. wt% NaCl) H2O–NaCl–CaCl2 ± MgCl2 fluids occur in inclusions. Na–Cl–Br systematics of trapped fluids and a calculated oxygen isotopic fluid composition between ?0.9 and +3.0‰ V-SMOW indicate that the fluid was derived from evaporated seawater. Stable isotopic modelling has been used to explain stable isotopic trends. Isotopic values (δ13C = ?6.0/+2.0‰ V-PDB, δ18O = +15.5/+22.5‰ V-SMOW of dolomites) resulted from fractionation and crystallisation within an open system at temperatures between 80 and 160°C. Rock-buffering explains the isotopic composition at low w/r ratios. Organic matter maturation caused the presence of isotopically light carbon in the fluids and fluid–rock interactions largely controlled the fluid chemistry (K, Li, Br and Na contents, K/Cl, I/Cl and Li/Cl molar ratios). The fluid chemistry reflects well the interaction between the fluid and underlying limestones as well as with clay- and organic-rich siliciclastics. No regional trends in temperature or fluid geochemistry favour a fluid migration model characterised by an important vertical upward migration along major faults. A permeable basement and fractured sedimentary sequence enhanced the general nature of the fluid system. Fluid characteristics are comparable with the main post-Variscan fluid flow systems in the Polish (Cracow-Silesian ore district) and German sedimentary basins.  相似文献   

13.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

14.
The Martabe Au–Ag deposit, North Sumatra Province, Indonesia, is a high sulfidation epithermal deposit, which is hosted by Neogene sandstone, siltstone, volcanic breccia, and andesite to basaltic andesite of Angkola Formation. The deposit consists of six ore bodies that occurred as silicified massive ore (enargite–luzonite–pyrite–tetrahedrite–tellurides), quartz veins (tetrahedrite–galena–sphalerite–chalcopyrite), banded sulfide veins (pyrite–tetrahedrite–sphalerite–galena) and cavity filling. All ore bodies are controlled by N–S and NW–SE trending faults. The Barani and Horas ore bodies are located in the southeast of the Purnama ore body. Fluid inclusion microthermometry, and alunite‐pyrite and barite‐pyrite pairs sulfur isotopic geothermometry show slightly different formation temperatures among the ore bodies. Formation temperature and salinity of fluid inclusions of the Purnama ore body range from 200 to 260 C and from 6 to 8 wt.% NaCl equivalent, respectively. Formation temperature and salinity of fluid inclusions of the Barani ore body range from 200 to 220 °C and from 0 to 2.5 wt.% NaCl equivalent and those of the Horas ore body range from 240 to 275 °C and from 2 to 3 wt.% NaCl equivalent, respectively. The Barani and Horas ore bodies are less silicified and sulfides are less abundant than the Purnama ore body. A relationship between enthalpy and chloride content indicates mixing of hot saline fluids with cooler dilute fluids during the mineralization of each of the ore bodies. The δ18O values of quartz samples from the southeast ore bodies exhibit a wide range from +4.2 to +12.9‰ with an average value of +7.0‰. The δ18O values of H2O estimated from δ18O values of quartz, barite and calcite confirm the oxygen isotopic shift to near meteoric water trend, which support the incorporation of meteoric water. Salinity of the fluid inclusions decrease from >5 wt.% NaCl equivalent in the Purnama ore body to <3 wt.% NaCl equivalent in the Barani ore body, indicating different fluid systems during mineralization. The δ34S values of sulfide and sulfate in Purnama range from ? 4.2 to +5.5‰ and from +1.2 to +26.7‰, those in the Barani range from ? 4.3 to +26.4‰ and from +3.9 to +18.5‰ and those in the Horas ore body range from ? 11.8 to +3.5‰ and from +1.4 to +25.7‰, respectively. The δ34S of total bulk sulfur in southeastern ore bodies (Σδ34S) was estimated to be approximately +6‰. The estimated sulfur fugacity during formation of the Purnama and Horas ore bodies is relatively high. It was between 10?4.8 and 10?10.8 atm at 220 to 260 °C. Tellurium fugacity was between 10?7.8 and 10?9.5 atm at 260 °C and between 10?9 and 10?10.6 atm at 220 °C in the Purnama ore body. The Barani ore body was formed at lower fS2, lower than about 10?14 atm at 200 to 220 °C based on the presence of arsenopyrite and pyrrhotite in the early stage, and between 10?14 and 10?12 atm based on the existence of enargite and tennantite in the last stage. © 2016 The Society of Resource Geology  相似文献   

15.
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor–liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daughter-bearing inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-temperature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ18O values of chalcopyrite-bearing quartz ranged from 4.96‰ to 5.86‰, with an average of 5.40‰. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from ? 87‰ to ? 107‰, with an average of ? 97.86‰. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.  相似文献   

16.
The Lalla Zahra W-(Cu) prospect of northeastern Morocco is hosted in a Devonian volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of the 284?±?7 Ma Alouana concentrically zoned, two micas, calc-alkaline, and post-collisional Alouana granitoid pluton has contact metamorphosed the host rocks, giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, and alusite, and cordierite. The mineralization occurs in and along subvertical, 20 to 40 cm thick, and structurally controlled tensional veins composed of quartz accompanied by molybdenite, wolframite, scheelite, base metal sulphides, carbonates, barite, and fluorite. Three main stages of mineralization (I, II, and III), each characterized by a specific mineral assemblage and/or texture, are recognized. Quartz dominates in all the veins and commonly displays multiple stages of vein filling and brecciation, and a variety of textures. The early tungsten-bearing stage consists of quartz-1, tourmaline, muscovite, wolframite, scheelite, and molybdenite. With advancing paragenetic sequence, the mineralogy of the veins shifted from stage I tungsten-bearing mineralization through stage II, dominated by base metal sulphides, to stage III with late barren carbonates and barite?±?fluorite mineral assemblages. Pervasive hydrothermal alteration affected, to varying degrees, the Alouana intrusion, resulting in microclinization, albitization, episyenitization, and greisenization of all the granitic units. Fluid inclusion data yield homogenization temperatures ranging from 124°C to 447°C for calculated salinity estimates in the range of 0.4 to ~60 wt% NaCl equiv. Similarly, the δ18O values for the three generations of quartz range from 11.7‰ to 13.9‰ V-SMOW. Calculated δ18O values of the parent fluid in the range between ?3‰ and +9‰ V-SMOW are consistent either with a mixture of water of different origins, including magmatic water, or an origin from seawater or meteoric water that probably exchanged oxygen with rocks at elevated temperatures. The coexistence of CO2-rich and H2O-rich fluid inclusions reflect the presence of a boiling fluid associated with the deposition of the early tungsten-bearing stage mineralization at relatively high temperature. The general temperature and salinity decrease with advancing paragenetic sequence suggest that the early high temperature, magmatic, highly saline, and boiling fluid mixed with meteoric non-boiling fluid results in the precipitation of base metal sulphide and carbonate–barite stage mineral assemblages, respectively.  相似文献   

17.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

18.
The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10 um) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-Cl--F--SO42- type, are characterized by temperatures of 164-221℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410×105 to 661×105 Pa. The contents of Na+-K+ and C1--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and Cl-/F- (18.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are rela  相似文献   

19.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

20.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号