首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The Naozhi Au–Cu deposit is located on the continental margin of Northeast China, forming part of the West Pacific porphyry–epithermal gold–copper metallogenic belt. In this paper, we systematically analyzed the compositions, homogenization temperatures, and salinity of fluid inclusions as well as their noble gas isotopic and Pb isotopic compositions from the deposit. These new data show that (1) five types of fluid inclusions were identified as pure gas inclusions (V-type), pure liquid inclusions (L-type), gas–liquid two-phase inclusions (W-type, as the main fluid inclusions (FIs)), CO2-bearing inclusions (C-type), and daughter-mineral-bearing polyphase inclusions (S-type); (2) W-type FIs in quartz crystals of early, main, and late stage are homogenized at temperatures of 324.7–406.7, 230–338.8, and 154.6–308 °C, with salinities of 2.40–7.01 wt% NaCleq, 1.73–9.47 wt% NaCleq, and 6.29 wt% NaCleq, respectively. S-type FIs in quartz crystals of early stage are homogenized at temperatures of 328.6–400 °C, with salinities of 39.96–46.00 wt% NaCleq; (3) Raman analysis results reveal that the vapor compositions of early ore-forming fluids consisted of CO2 and H2O, with H2O gradually increasing and CO2 being absent at the late mineralization stage; (4) fluid inclusions in pyrite and chalcopyrite have 3He/4He ratios of 0.03–0.104 Ra, 20Ne/22Ne ratios of 9.817–9.960, and 40Ar/36Ar ratios of 324–349. These results indicate that the percentage of radiogenic 40Ar* in fluid inclusions varies from 8.8 to 15.5 %, containing 84.5–91.2 % atmospheric 40Ar; (5) the 206Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios of sulfides are 18.1822–18.3979, 15.5215–15.5998, and 38.1313–38.3786, respectively. These data combined with stable isotope data and the chronology of diagenesis and metallogenesis enable us suppose that the ore-forming fluids originated from the melting of the lower crust, caused by the subduction of an oceanic slab, whereas the mineralized fluids were exsolved from the late crystallization stage and subsequently contaminated by crustal materials/fluids during ascent, including meteoric water, and the mineral precipitation occurred at a shallow crustal level.

  相似文献   

2.
粤北诸广南部铀矿田是我国重要的花岗岩型铀矿产地之一,有关诸广南部花岗岩型铀矿田的成因,多年来一直存在较大的争议。本文以诸广南部铀矿田典型铀矿床成矿期萤石、方解石和黄铁矿中流体包裹体为测试对象,研究了成矿流体的He、Ar同位素地球化学。研究表明,萤石流体包裹体的~3He/~4He比值为0. 021~0. 186Ra,~(40) Ar/~(36)比值为298. 4~2515. 7;方解石流体包裹体的3He/4He比值为0. 027~0. 209Ra,~(40) Ar/~(36)比值为295. 9~327. 2;黄铁矿流体包裹体的3He/4He比值为0. 021~1. 543Ra,~(40) Ar/~(36)比值为326. 9~1735. 1; He-Ar同位素系统显示成矿流体的3He/4He比值略高于地壳氦同位素特征值(0. 01~0. 05Ra),但低于幔源氦同位素特征值(6~9Ra),~(40) Ar/~(36)比值接近或高于大气氩的同位素组成(~(40) Ar/~(36)=295. 5),成矿流体为壳-幔混合来源。结合H-O、He-Ar、C和Sr等多元同位素证据表明,成矿流体由两个端元组成:一是含有一定放射性成因Ar的大气降水的地壳流体,二是含幔源He的地幔流体。进一步研究表明,受NNW向断裂控制的棉花坑、书楼丘、长排等铀矿床受地幔流体影响比较大,而受NE向断裂控制的蕉坪、东坑、烟筒岭铀矿床受大气降水影响比较大。  相似文献   

3.
Chemical and isotopic compositions have been measured for N2-He-rich bubbling gases discharging from hot springs in the Hainan Island, Southern China. Observed 3He/4He ratios (0.1–1.3 RA) indicate the occurrence of a mantle component throughout the island, which has been highly diluted by a crustal radiogenic 4He component. The occurrence of mantle-derived helium is high in the northern island (12%–16% of total He) and gradually decreases towards southern coast (1%–3% of total He). Such a distribution pattern is most likely controlled by the Pleocene-Quaternary volcanic activities in the northern island and groundwater circulation along the deep major faults. The 40Ar/36Ar and N2/Ar ratios suggest that N2 and Ar of the hot spring gases are mostly meteoric. Although δ13C values of CO2 (–20‰ to –27‰) with low concentrations are consistent with the biogenic origin, the combination of 3He/4He and d13CCO2 suggests a two end-member mixing of mantle and crustal components with CO2/3He ratios of 2×109 and 8×1011, respectively. However, the low CO2/3He ratios (1–22×106) can not be ascribed in terms of the simple mixing but has to be explained by the addition of radiogenic 4He and loss of CO2 by calcite precipitation in the hydrothermal system, which is most likely controlled by the degree of gas-water-rock interaction.  相似文献   

4.
5.
Mantle-derived xenoliths of spinel lherzolite, spinel pyroxenite, garnet pyroxenite and wehrlite from Bullenmerri and Gnotuk maars, southwestern Victoria, Australia contain up to 3 vol.% of fluids trapped at high pressures. The fluid-filled cavities range in size from fluid inclusions (1–100 m) up to vugs 11/2 cm across, lined with euhedral high-pressure phases. The larger cavities form an integral part of the mosaic microstructure. Microthermometry and Raman laser microprobe analysis show that the fluids are dominantly CO2. Small isolated inclusions may have densities 1.19 g/cm3, but most inclusions show microstructural evidence of partial decrepitation during eruption, and these have lower fluid densities. Mass-spectrometric analysis of gases released by crushing or heating shows the presence of He, N2, Ar, H2S, COs and SO2 in small quantities; these may explain the small freezing-point depressions observed in some inclusions. Petrographic, SEM and microprobe studies show that the trapped fluids have reacted with the cavity walls (in clinopyroxene grains) to produce secondary amphiboles and carbonates. The trapped CO2 thus represents only a small residual proportion of an original volatile phase, which has undergone at least two stages of modification — first by equilibration with spinel lherzolite to form amphibole (±mica±apatite), then by limited reaction with the walls of the fluid inclusions. The inferred original fluid was a CO2-H2O mixture, with significant contents of (at least) Cl and sulfur species. Generation of this fluid phase in the garnet-peridotite stability field, followed by its migration to the spinel peridotite stability field, would provide an efficient mechanism for metasomatic enrichment of the upper mantle in LIL elements. This migration could involve either a volatile flux or transport in small volumes of silicate melt that crystallize in the spinel peridotite field. These observations suggest that some portions of the subcontinental upper mantle contain large reservoirs of free fluid CO2, which may be liberated during episodes of rifting or magmatism, to induce granulite-facies metamorphism of the lower crust.  相似文献   

6.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

7.
New volatile data (CO2, H2O, He, Ne, and Ar) are presented for 24 submarine basaltic glasses from the Kolbeinsey Ridge, Tjörnes Fracture Zone and Mohns Ridge, North Atlantic. Low CO2 and He contents indicate that magmas were strongly outgassed with the extent of degassing increasing toward the south, as expected from shallower ridge depths. Ne and Ar are significantly more abundant in the southernmost glasses than predicted for degassed melt. The strong atmospheric isotopic signal associated with this excess Ne and Ar suggests syn- or posteruptive contamination by air. Degassing, by itself, cannot generate the large variations in δ13C values of dissolved CO2 or coupled CO2-Ar variations. This suggests that δ13C values were also affected by some other processes, most probably melt-crust interaction. Modelling indicates that degassing had a negligible influence on water owing to its higher solubility in basaltic melt than the other volatiles. Low H2O contents in the glasses reflect melting of a mantle source that is not water-rich relative to the source of N-MORB.Before eruption, Kolbeinsey Ridge melts contained ∼400 ppm CO2 with δ13C of −6‰, 0.1 to 0.35 wt.% H2O, 3He/4He ∼11 RA, and CO2/3He of ∼2 × 109. We model restored volatile characteristics and find homogeneous compositions in the source of Kolbeinsey Ridge magmas. Relative to the MORB-source, He and Ne are mildly fractionated while the 40Ar/36Ar may be low. The 3He/4He ratios in Tjörnes Fracture Zone glasses are slightly higher (13.6 RA) than on Kolbeinsey Ridge, suggesting a greater contribution of Icelandic mantle from the south, but the lack of 3He/4He variation along the Kolbeinsey Ridge is inconsistent with active dispersal of Icelandic mantle beyond the Tjörnes Fracture Zone.  相似文献   

8.
Fluid inclusions in the leucosomes of Wadi Feiran migmatites showed that CO 2 , H2O and (H2O-CO2) fluids were likely to have been present when partial melting began in these rocks. Low salinity, aqueous fluid, to a lesser extent, CO2-rich fluids are the most abundant fluids. The present study suggests that high-density CO2 inclusions were formed at the earliest stage, while H2O inclusions were formed at the late stage. In an intermediate stage, low-density CO2 and H2O, CO2 inclusions were formed. At the early stage of uplift and during melt crystallization, the CO2-bearing vapour was trapped at grain boundaries. At the late stage of uplift, H2O released at the time of crystallization of the melt was trapped as inclusions.  相似文献   

9.
Investigations of fluid inclusions in granulitefacies metapelites of southern Calabria enable characterization of the fluid composition of these lower crustal rocks, and constrain the petrologically deduced retrograde P-T path characterized by isothermal uplift prior to isobaric cooling in middle crustal levels. Fluid inclusions in cordierite, garnet and sillimanite have a CO2-rich composition. Inclusions in cordierite rarely contain minor amounts of N2 and H2O, and in garnets some CO2–CH4–N2 inclusions have been analyzed by Raman microprobe. Quartz reveals the most complex fluid melusion compositions (1) CO2-rich, (2) CO2–CH4–N2, (3) CH4–N2, (4) H2O–MgCl2–CaCl2–NaCl, (5) H2O–NaCl and (6) H2O–CO2. The earliest fluid inclusions after peak metamorphism are rich in CO2 with minor amounts of N2 and H2O. An early CO2–(H2O–N2) fluid composition has been confirmed by detection of CO2, H2O and N2 in the channels of the cordierite structure. Most of the early CO2-rich fluid inclusions were modified during the uplift from the lower to the middle crustal level, resulting in a density decrease with CO2 still dominant. The subsequent isobaric cooling led to further modifications of the fluid inclusions. High-density inclusions around implosion textures or scattered amongst lower-density ones must have formed during this cooling episode. Aqueous inclusions in quartz are mostly formed late and are consistent with trapping during retrograde rehydration.This project has been supported by the DFG as contribution to the special program Continental Lower Crust  相似文献   

10.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

11.
《Ore Geology Reviews》1999,14(3-4):203-225
The auriferous veins at Yirisen, Masumbiri, Sierra Leone, occurring mainly in the form of sericitic quartz-sulphide lodes and stringers, are hosted in metamorphosed volcano-sedimentary assemblages invaded by at least two generations of granitic intrusions. Detailed microthermometric studies of fluid inclusions from the veins coupled with laser Raman spectroscopic analysis show that the inclusions contain aqueous fluids of variable salinity (5 to 60 wt.% NaCl equivalent) and dense carbonic fluids (pure CO2: 1.08>d>0.88 g/cm3). Optical observations and analysis on opened inclusions by scanning electron microscopy (SEM) reveal that some of the aqueous inclusions contain a number of daughter minerals: halite, sylvite, Ca-, Fe-, Mg- and possibly Li-bearing chlorides, and anhydrite; nahcolite occurs also in some of the CO2 inclusions. The SEM runs also detected a small amount of electrum, suggesting that silver might be a bi-product of the mineralisation. The aqueous and carbonic fluids remained immiscible throughout the formation and evolution of the hydrothermal veins. A few mixed (H2O+CO2) inclusions apparently resulted from accidental trapping of both fluids in the same cavity. The wide range of salinities observed in the aqueous inclusions is attributed to the mixing of relatively hot, low-salinity aqueous fluids and colder, high-salinity brines. The CO2-rich and low-salinity H2O inclusions are considered to be derived from the metamorphic decarbonation/dehydration of the greenstone pile whilst the high-salinity brines are believed to be basinal in origin. Pressure–temperature (PT) conditions of entrapment, inferred from the intersection of representative isochores of the immiscible fluids, indicate that the formation of the veins started at T=400°C and P about 4 kbar, in the presence of the high-density CO2 and low-salinity H2O fluids. At about 200°C, pressure fluctuations (incremental opening of the vein) correspond to the trapping of the lower-density CO2 inclusions and high-salinity brines. It is proposed that the decarbonation/dehydration processes (possibly aided by later magmatic processes) expelled and mobilised the gold from the greenstone pile and concentrated it in the CO2-bearing hydrothermal fluid in the form of Au–chloride complexes. High thermal gradients are believed to have caused the upward migration of this fluid from the bottom of the greenstone pile through structurally controlled conduits. We contend that phase separation of the H2O–CO2 metamorphic fluid, aided possibly by some wall–rock alteration, most probably triggered a decrease in ligand activity and thus, precipitation of the gold into lodes. Percolation of the basinal brines is thought to have remobilised some of the gold together with some silver.  相似文献   

12.
We have studied melt and fluid inclusions in minerals from alkali basalts, mantle xenoliths, and dawsonite-bearing sandstones from the Shuangliao volcanic field in southern Songliao Basin, Northeast China. The inclusions have been investigated using petrographic, geochemical, and laser Raman spectroscopic techniques. Volcanic rocks of the Shuangliao field are predominantly alkali olivine basalts that contain rare mantle xenoliths. Silicate melt and fluid inclusions are common in both olivine phenocrysts and the mantle xenoliths. The fluid inclusions are mainly composed of CO2 with small amounts of CO, CH4, N2, and H2O, which is consistent with an upper mantle origin. CO2 gas reservoirs in the southern Songliao Basin are mostly derived from a mantle–magmatic source. Coeval fluid-inclusion homogenization temperatures, coupled with the thermal burial history, show that the CO2 gas reservoirs in the southern Songliao Basin are Cenozoic (40–63 Ma) and coeval with the magmatism in the Shuangliao volcanic field. Despite the relatively small scale of this volcanic activity, it released large amounts of CO2. Much of the magma was not erupted, and CO2- and H2O-rich magma was probably intruded into the basin along deep faults, acting as a major source of inorganic CO2 gas in the southern Songliao Basin.  相似文献   

13.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

14.
A fluid inclusion study was completed on syn-deformational quartz veins of the Pote River Shear Zone, which is situated on the border between the Harare-Bindura greenstone belt and the granitoids of the Chinamora Batholith. The fluid inclusions were studied by means of microthermometry and Laser-Raman microspectrometry. The fluid inclusions consist of three major compositional types: (1) H2OCO2±N2±halite inclusions in clusters and trails; (2) H2OCO2 inclusions (H2O = 30–60 vol. %) in trails; and (3) H2O-halite inclusions in trails. These fluid generations are explained by trapping at different P-T conditions of two different fluids: a high salinity aqueous fluid and a low salinity H2OCO2 fluid with XH2O around 0.8. High salinity aqueous fluid inclusions are characteristic for the granite-greenstone contact and are absent within the Harare-Shamva-Bindura greenstone belt. The high salinity aqueous fluid has, therefore, been interpreted as magmatic in origin. The low salinity H2OCO2 fluid is most likely metamorphic in origin.  相似文献   

15.
Minerals in eclogites from different localities in the Western Gneiss Region of the Norwegian Caledonides (age 425 Ma) contain a variety of fluid inclusions. The earliest inclusions recognized are contained in undeformed quartz grains, protected by garnet, and consist of H2O+N2 (with ). The reconstructed P-V-T-X properties of these fluid inclusions are compatible with peak or early-retrograde metamorphic conditions. Matrix minerals (quartz, garnet, apatite, plagioclase) contain a complex pattern of mostly truly secondary inclusions, dominated by CO2 and N2. The textural patterns and P-V-T-X properties of these inclusions are incompatible with the high pressures of the eclogite-forming metamorphic event, but suggest that they were formed during uplift, by a combination of remobilization of preexisting inclusions and influx of external fluids. The fluid introduced at a late stage was dominated by CO2, and did not contain N2. The present data agree with theoretical predictions of eclogite fluids from mineral equilibria, and highlight the differences between granulite (CO2) and eclogite (H2O+N2) fluid regimes. The provenance of the nitrogen in the eclogite fluid inclusions represents an important, but unsolved question in the petrology of high-pressure metamorphic rocks.Contribution no. 68 to the Norwegian programme of the International Lithosphere Project  相似文献   

16.
It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs. However, the location of carbon storage in Earth’s interior and the reasons for carbon enrichment remain unclear. In this study, we report CO2-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area, Hainan Province, which may shed some light on the carbon enrichment process in the lithospheric mantle. We also present ...  相似文献   

17.
Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H2O, H2O−CO2 and CO2 inclusions. H2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200°C and 175 to 250°C, respectively. The salinity of aqueous inclusions, based on ice melting, varies between 6.1 and 8 equiv. wt% NaCl. On the other hand, H2O−CO2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325°C, and their salinity, based on clathrate melting, ranges between 0.8 and 3.8 equiv. wt% NaCl. CO2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from 0.52 to 0.66 g/cm3. The partial mixing of H2O−CO2 and salt H2O−NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.  相似文献   

18.
The Qiangma gold deposit is hosted in the > 1.9 Ga Taihua Supergroup metamorphic rocks in the Xiaoqinling terrane, Qinling Orogen, on the southern margin of the North China Craton. The mineralization can be divided as follows: quartz-pyrite veins early, quartz-polymetallic sulfide veinlets middle, and carbonate-quartz veinlets late stages, with gold being mainly introduced in the middle stage. Three types of fluid inclusions were identified based on petrography and laser Raman spectroscopy, i.e., pure carbonic, carbonic-aqueous (CO2–H2O) and aqueous inclusions.The early-stage quartz contains pure carbonic and CO2–H2O inclusions with salinities up to 12.7 wt.% NaCl equiv., bulk densities of 0.67 to 0.86 g/cm3, and homogenization temperatures of 280−365 °C. The early-stage is related to H2O–CO2 ± N2 ± CH4 fluids with isotopic signatures consistent with a metamorphic origin (δ18Owater = 3.1 to 5.2‰, δD =  37 to − 73‰). The middle-stage quartz contains all three types of fluid inclusions, of which the CO2–H2O and aqueous inclusions yield homogenization temperatures of 249−346 °C and 230−345 °C, respectively. The CO2–H2O inclusions have salinities up to 10.9 wt.% NaCl equiv. and bulk densities of 0.70 to 0.98 g/cm3, with vapor bubbles composed of CO2 and N2. The isotopic ratios (δ18Owater = 2.2 to 3.6‰, δD =  47 to − 79‰) suggest that the middle-stage fluids were mixed by metamorphic and meteoric fluids. In the late-stage quartz only the aqueous inclusions are observed, which have low salinities (0.9−9.9 wt.% NaCl equiv.) and low homogenization temperatures (145−223 °C). The isotopic composition (δ18Owater =  1.9 to 0.5‰, δD =  55 to − 66‰) indicates the late-stage fluids were mainly meteoric water.Trapping pressures estimated from CO2–H2O inclusions are 100−285 MPa for the middle stage, suggesting that gold mineralization mainly occurred at depths of 10 km. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, and fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Qiangma gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic−Early Cretaceous continental collision between the North China and Yangtze cratons.  相似文献   

19.
Tabular steeply dipping cassiterite‐bearing lodes in the Mount Wells region are hosted by lower greenschist fades metasediment of the Pine Creek Geosyncline within the contact aureole of late orogenic granitoids. The latter are predominantly I‐type, but S‐type phases are developed near the sediment‐granitoid contact.

Quartz, cassiterite, pyrite, arsenopyrite, chalcopyrite and pyrrhotite are the main minerals. Two types of lodes are present: (i) Sn‐quartz lodes containing 5–10 vol% sulphide minerals; and (ii) Sn‐sulphide lodes containing ~ 70 vol% sulphide minerals. At the surface, the former appear as normal quartz veins and the latter as hematite‐quartz breccia resulting from the collapse of original sulphide‐rich lodes as a consequence of volume reduction due to oxidation and leaching.

Two stages of quartz veining are recognized in both types of lodes. Cassiterite is present in stage I while stage II is composed of barren quartz with minor pyrite. Late stage III carbonate veinlets are present in Sn‐sulphide lodes. The lode‐wallrock contact is sharp with weak alteration effects confined to the fringe of the lodes. The alteration minerals include sericite, quartz, tourmaline, chlorite, pyrite and minor K‐feldspar.

Four types of fluid inclusions are present in vein quartz and cassiterite: Type A (CO2 ± H2O ± CH4); Type B (H2O+~ 20% vapour); Type C (H2O+ < 15% vapour) and Type D (H2O+ < 15% vapour + NaCl). Early ‘primary’ inclusions represented by Types A and B are present in stage I only and have a well‐defined temperature mode at ~300°C and a salinity range of 1–20 wt% eq NaCl. Types C and D inclusions are ‘secondary’ in stage I and primary in stage II and have a temperature mode at 120–160°C and salinities from about 1 to more than 26 wt% eq NaCl. Variable H2O‐CO2 ratios of Type A inclusions and homogenization in CO2 or H2O phase at near identical temperature indicate entrapment at the H2O‐CO2 solvus and define a pressure of ~ 100 MPa. The melting sequence of frozen inclusions suggests that the ore fluids were mainly H2O‐CO2‐CH4‐Na‐Ca‐Cl brines. This is also confirmed by Raman Laser Spectrometry.

Oxygen and sulphur isotope data are consistent with a magmatic origin of the ore fluids. The δD values are up to 20%0 higher than those expected for magmatic fluids and probably resulted from interaction of the latter with the carbonaceous strata. This interpretation is supported by δ13C data on the fluid inclusion CO2.

Fluid inclusions, stable isotope and mineralogical data are used to approximate the physico‐chemical parameters of the ore fluids which are as follows: T 300°C, m Cl~2, fO2 ~ 10‐35, mSS ~ 0.01, Sn ~ 1 ppm, Cu ~ 1 ppm and pH ~ 5.5.

It is suggested that fluids of granitic parentage interacted with the enclosing sediment and picked up CO2, CH4 and possibly Ca. The granitic phases became reduced due to this interaction and developed S‐type characteristics. Tin was probably partitioned into the CH4‐bearing reduced fluids. At some stage the fluid overpressure exceeded the lithostatic lode enforcing failure of the carapace and the intruded rocks by hydraulic fracturing causing CH4 and CO2 loss resulting in the precipitation of the ore minerals.  相似文献   

20.
H2O, CO2, and H2OCO2 inclusions were observed in quatz from deep-seated granitic intrusions belonging to the Precambrian Farsund plutonic complex, south Norway. These inclusions represent solidus and/or sub-solidus fluids that were present in these rocks at some period between the initial melt and the present. Early CO2 and H2OCO2 inclusions with about 20 mole% CO2 contain up to 10 mole% CH4 in the CO2 phase and have densities from 0.96 to 0.85 g/cc. These inclusions are considered to most nearly approximate solidus vapour phases and suggest conditions of final solidification of the magma at 5 to 6 Kb and 700°C to 800°C. The H2O inclusions have salinities between 2 and 60 wt%; the majority contain 5 to 20 equivalent wt.% NaCl and have densities from 1.05 to 0.85 g/cc. Microthermometry indicates that other cations such as K+, Ca2+ and / or Mg2+ are present in these aqueous fluids. The H2O inclusions primarily represent fluids present at a post-magmatic stage of fracturing and healing of these rocks during uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号