首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Porphyroblast inclusion trails: the key to orogenesis   总被引:8,自引:0,他引:8  
Detailed microstructural analysis of inclusion trails in hundreds of garnet porphyroblasts from rocks where spiral-shaped inclusion trails are common indicates that spiral-shaped trails did not form by rotation of the growing porphyroblasts relative to geographic coordinates. They formed instead by progressive growth by porphyroblasts over several sets of near-orthogonal foliations that successively overprint one another. The orientations of these near-orthogonal foliations are alternately near-vertical and near-horizontal in all porphyroblasts examined. This provides very strong evidence for lack of porphyroblast rotation.
The deformation path recorded by these porphyroblasts indicates that the process of orogenesis involves a multiply repeated two-stage cycle of: (1) crustal shortening and thickening, with the development of a near-vertical foliation with a steep stretching lineation; followed by (2) gravitational instability and collapse of this uplifted pile with the development of a near-horizontal foliation, gravitational spreading, near-coaxial vertical shortening and consequent thrusting on the orogen margins. Correlation of inclusion trail overprinting relationships and asymmetry in porphyroblasts with foliation overprinting relationships observed in the field allows determination of where the rocks studied lie and have moved within an orogen. This information, combined with information about chemical zoning in porphyroblasts, provides details about the structural/metamorphic ( P-T-t ) paths the rocks have followed.
The ductile deformation environment in which a porphyroblast can rotate relative to geographic coordinates during orogenesis is spatially restricted in continental crust to vertical, ductile tear/transcurrent faults across which there is no component of bulk shortening or transpression.  相似文献   

2.
In the Littleton Formation, garnet porphyroblasts preserve three generations of growth that occurred before formation of the Bolton Syncline. Inclusion trails of foliations overgrown by these porphyroblasts are always truncated by the matrix foliation suggesting that garnet growth predated the matrix foliation. In contrast, many staurolite porphyroblasts grew synchronously with formation of the Bolton Syncline. However, local rim overgrowths of the matrix foliation suggest that some staurolite porphyroblasts continued to grow after development of the fold during younger crenulation producing deformations. The axes of curvature or intersection of foliations defined by inclusion trails inside the garnet porphyroblasts lie oblique to the axial plane of the Bolton Syncline but do not change orientation across it. This suggests the garnets were not rotated during the subsequent deformation associated with fold development or during even younger crenulation events. Three samples also contain a different set of axes defined by curvature of inclusion trails in the cores of garnet porphyroblasts suggesting a protracted history of garnet growth. Foliation intersection axes in staurolite porphyroblasts are consistently orientated close to the trend of the axial plane of the Bolton Syncline on both limbs of the fold. In contrast, axes defined by curvature or intersection of foliations in the rims of staurolite porphyroblasts in two samples exhibit a different trend. This phase of staurolite growth is associated with a crenulation producing deformation that postdated formation of the Bolton Syncline. Measurement of foliation intersection axes defined by inclusion trails in both garnet and staurolite porphyroblasts has enabled the timing of growth relative to one another and to the development of the Bolton Syncline to be distinguished in rocks where other approaches have not been successful. Consistent orientation of foliation intersection axes across a range of younger structures suggests that the porphyroblasts did not rotate relative to geographical coordinates during subsequent ductile deformation. Foliation intersection axes in porphyroblasts are thus useful for correlating phases of porphyroblastic growth in this region.  相似文献   

3.
Schists from the foothills of the Central Sierra Nevada contain one dominant matrix foliation and yet four phases of growth of both cordierite and andalusite porphyroblasts can be distinguished. These occurred early during four separate deformation events that formed successive steep and shallow foliations. A fifth deformation event pre-dates the growth of all porphyroblasts studied. The multiple phases of porphyroblast growth allow correlation of structures across and along the region. A repeated pattern of deformation, in terms of the curvature of earlier foliations against the overprinting one, allows samples containing porphyroblasts with simpler inclusion trail geometries to be interpreted with confidence. The large-scale fold structures in this region formed before or during the second of the five deformation events recorded by the porphyroblasts. However, the matrix foliation is predominantly a product of the fourth deformation, which has commonly reactivated or re-used older foliations, and is dominated by east-side-up shear. The intervening third deformation produced locally intense foliations and was accompanied by top-to-the-east shear. The very weak fifth deformation produced weak crenulations with subhorizontal axial planes and was coaxial. Multiple phases of episodic but synchronous growth of cordierite and andalusite were produced by the KFMASH univariant equilibrium Ms+Chl+Qtz=And+Crd+Bt+H2O. The rocks crossed this reaction at a pressure just below the intersection with the KFMASH divariant equilibrium Ms+Chl+Qtz=Crd+Bt+H2O; the latter being overstepped in favour of the former as there is no evidence for cordierite growth prior to andalusite in these rocks. Subsequent multiple episodes of synchronous growth of cordierite and andalusite indicate that the possible variation in P–T during subsequent deformations was not large. This requires the high-amplitude macroscopic fold to form prior to porphyroblast growth and then be simply tightened and modified by the younger deformations.  相似文献   

4.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

5.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

6.
变质岩中变斑晶成核生长及旋转问题的述评   总被引:3,自引:0,他引:3  
发生递进变形的变质岩中,斑晶成核生长于变形分解作用的递进缩短带内,斑晶的大小受两侧递进剪切变形带的限制。除少数螺旋状石榴石外,产于共轴或非共轴递进不均匀缩短变形过程中的斑晶不发生旋转,斑晶内部包体形迹(Si)反映外部面理(Se)的再活化。利用未旋转斑晶中的包体形迹可以确定早期面理的取向,寻找构造演化的时间标志,确定褶皱轴迹等,本文给出了斑晶中包体形迹弯曲的成因模式图。  相似文献   

7.
Argument about shear on foliations began in the mid 19th century and continues to the present day. It results from varying interpretations of what takes place during the development of different types of foliations ranging from slaty cleavages through differentiated crenulation cleavages, schistosity and gneissosity to mylonites. Computer modelling, quantitative microstructural work and monazite dating have provided a unique solution through access to the history of foliation development preserved by porphyroblasts. All foliations involve shear in their development and most can be used to derive a shear sense. The shear sense obtained is consistent between foliation types and accords with recent computer modelling of these structures preserved within porphyroblasts relative to those in the matrix. The asymmetry of curving foliation into a locally developing new one allows determination of the shear sense along the latter foliation in most rocks. The problem of shear on fold limbs and parallelism of foliation and the flattening plane of the strain ellipse is resolved through the partitioning of shearing and shortening components of deformation into zones that anastomose around ellipsoidal domains lying parallel to the XY plane. Conflicts in shear sense occur if multiple reuse or reactivation of foliations is not recognized and allowed for but are readily resolved if taken into account.  相似文献   

8.
In a number of recent papers, the theory has been postulated that porphyroblasts as a rule do not rotate with respect to geographical coordinates, and can be used to determine the original orientation of older foliations. Complex inclusion patterns in spiral garnets have even been used to advocate a new model of orogenesis, involving several alternating phases of horizontal shortening and extension. Critical assessment of the assumptions and data used to support the theory of irrotational porphyroblasts reveals numerous flaws. Millipede structures, used as proof for flow partitioning, can also form by other flow geometries. Evidence quoted to support irrotational behaviour of porphyroblasts is unsound. Porphyroblasts do occur in sets with a preferred orientation of the internal foliation trace, but these cannot be shown to represent original orientations. Microstructures which resemble truncation planes in spiral garnets are used as evidence that these structures developed by several phases of deformation and as proof for periodic extension and horizontal shortening in orogenesis. They can, however, also be explained by intermittent growth of a rotating porphyroblast during a single phase of deformation. Finally, porphyroblast sets in which orientation is a function of aspect ratio indicate that porphyroblast rotation with respect to kinematic axes does occur in at least some situations.  相似文献   

9.
Understanding the relationships of inclusion trail geometries in porphyroblasts relative to matrix foliations is vital for unravelling complex deformation and metamorphic histories in highly tectonized terranes and the approach used to thin sectioning rocks is critically important for this. Two approaches have been used by structural and metamorphic geologists. One is based on fabric orientations with sections cut perpendicular to the foliation both parallel (P) and normal (N) to the lineation, whereas the other uses geographic orientations and a series of vertical thin sections. Studies using P and N sections reveal a simple history in comparison with studies using multiple-vertical thin sections. The reason for this is that inclusion trails exiting the porphyroblasts into the strain shadows in P and N sections commonly appear continuous with the matrix foliation whereas multiple vertical thin sections with different strikes reveal that they are actually truncated. Such truncations or textural unconformities are apparent from microstructures, textural relationships, compositional variations and FIA (foliation intersection axis) trends. A succession of four FIA trends from ENE–WSW, E–W, N–S to NE–SW in the Robertson River Metamorphics, northern Queensland, Australia, suggests that these truncations were formed because of the overprint of successive generations of orthogonal foliations preserved within porphyroblasts by growth during multiple deformation events. At least four periods of orogenesis involving multiple phases of porphyroblast growth can be delineated instead of just the one previously suggested from an N and P section approach.  相似文献   

10.
变斑晶包体形迹研究的几个问题   总被引:1,自引:0,他引:1  
变斑晶是联系变质与变形的重要媒介。变斑晶内的包体按几何形态可分为9大类。在发生递进变形的变质岩中,斑晶成核生长于变形分解作用的递进缩短带内。除少数螺旋状石榴石外,产于共轴或非共轴递进不均匀缩短变形过程中的斑晶不发生旋转。在韧性剪切带中,由于存在变形分解作用,在岩石发生递进变形过程中,产于共轴或非共轴递进缩短带内的变斑晶也不发生旋转。利用未旋转斑晶中包体形迹可以确定早期面理的取向,寻找构造演化时间标志,确定变形变质关系及其演化史。如在大背坞地区,根据黄铁矿变斑晶的旋转演化,可以恢复韧性剪切带的成生演化历史。近十几年来由于计算机模拟的引人,使变斑晶微构造研究从定性步入定量阶段。  相似文献   

11.
In the metamorphic cores of many orogenic belts, large macroscopic folds in compositional layering also appear to fold one or more pervasive matrix foliations. The latter geometry suggests the folds formed relatively late in the tectonic history, after foliation development. However, microstructural analysis of four examples of such folds suggests this is not the case. The folds formed relatively early in the orogenic history and are the end product of multiple, near orthogonal, overprinting bulk shortening events. Once large macroscopic folds initiate, they may tighten further during successive periods of sub-parallel shortening, folding or reactivation of foliations that develop during intervening periods of near orthogonal shortening. Reactivation of the compositional layering defining the fold limbs causes foliation to be rotated into parallelism with the limbs.Multiple periods of porphyroblast growth accompanied the multiple phases of deformation that postdated the initial development of these folds. Some of these phases of deformation were attended by the development of large numbers of same asymmetry spiral-shaped inclusion trails in porphyroblasts on one limb of the fold and not the other, or larger numbers of opposite asymmetry spirals on the other limb, or similar numbers of the same asymmetry spirals on both limbs. Significantly, the largest disparity in numbers from limb to limb occurred for the first of these cases. For all four regional folds examined, the structural relationships that accompanied these large disparities were identical. In each case the shear sense operating on steeply dipping foliations was opposite to that required to originally develop the fold. Reactivation of the folded compositional layering was not possible for this shear sense. This favoured the development of sites of approximately coaxial shortening early during the deformation history, enhancing microfracture and promoting the growth of porphyroblasts on this limb in comparision to the other. These distributions of inclusion trail geometries from limb to limb cannot be explained by porphyroblast rotation, or folding of pre-existing rotated porphyroblasts within a shear zone, but can be explained by development of the inclusion trails synchronous with successive sub-vertical and sub-horizontal foliations.  相似文献   

12.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix.  相似文献   

13.
过去还无人指出过板块相对运动的方向与缓倾斜叶理、逆断层和断层上的线状指示物有直接关系,这是因为缓倾斜构造上的运动方向只和变厚了的造山地层的重力塌陷有关,它们和俯冲板块传递给仰冲板块的推力没有关系。缓倾斜叶理上的运动方向的线状指示物和斑状变晶中的叶理弯曲或叶理交切轴(FIA)并无直接关系,这是因为FIA的指向受缓倾斜叶理和斑状变晶边缘上产生的、近乎垂直的叶理之间的交切面控制。在班状变晶边缘上形成的、近乎垂直的叶理在基质中的方位可能在较大范围内变动,因为它们会在稍早期间形成的叶理再活化作用影响下发生转动或遭到破坏。斑状变晶边缘上近乎垂直的叶理,与形成于早期或晚期的缓倾斜叶理的交线,在后期的生长中被圈闭在班状变晶里,此交线规定出了FIA的方位,而与叶理上的运动方向无关。从美国佛蒙特州阿巴拉契亚山脉采集的FIA资料指出,在125km×35km的一片地区内,在该地岩层所发生的多次变形中,从未曾使早期形成的FIA组的方位发生变动。这种情况要求:后来的每一代褶皱都是由于渐进的。总体不均匀缩短作用造成的。这种情况表明:FIA保存着原始的运动方向,此方向未因以后的变形而转动。非洲板块与欧洲板块的相对运动方向和由阿尔卑斯期变质岩中叶理交切轴(FIAs)所指示  相似文献   

14.
ABSTRACT Oppositely concave microfolds (OCMs) in and adjacent to porphyroblasts can be classified into five nongenetic types. Type 1 OCMs are found in sections through porphyroblasts with spiral-shaped inclusion trails cut parallel to the spiral axes, and commonly show closed foliation loops. Type 2 OCMs, commonly referred to as ‘millipede’ microstructure, are highly symmetrical, the foliation folded into OCMs being approximately perpendicular to the overprinting foliation. Type 3 OCMs are similar to Type 2, but are asymmetrical, the foliation folded into OCMs being variably oblique to the overprinting foliation. Type 4 OCMs are highly asymmetrical, only one foliation is present, and this foliation is parallel to the local shear plane. Type 5 OCMs result from porphyroblast growth over a microfold interference pattern. Types 1 and 2 are commonly interpreted as indicating highly noncoaxial and highly coaxial bulk deformation paths, respectively, during porphyroblast growth. However, theoretically they can form by any deformation path intermediate between bulk coaxial shortening and bulk simple shearing. Given particular initial foliation orientation and timing of porphyroblast growth, Type 3 OCMs can also form during these intermediate deformation paths, and are commonly found in the same rocks as Type 2 OCMs. Type 4 OCMs may indicate highly noncoaxial deformation during porphyroblast growth, but may be difficult to distinguish from Type 3 OCMs. Thus, Types 1–3 (and possibly 4) reflect the finite strain state, giving no information about the rotational component of the deformation(s) responsible for their formation. Furthermore, there is a lack of unequivocal independent evidence for the degree of noncoaxiality of deformation (s) during the growth of porphyroblasts containing OCMs. Type 2 OCMs that occur independently of porphyroblasts or other rigid objects might indicate highly coaxial bulk shortening, but there is a lack of supporting physical or computer modelling. It is possible that microstructures in the matrix around OCMs formed during highly noncoaxial and highly coaxial deformation histories might have specific characteristics that allow them to be distinguished from one another. However, determining degrees of noncoaxiality from rock fabrics is a major, longstanding problem in structural geology.  相似文献   

15.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

16.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

17.
剪切带中变斑晶的生长及包裹体痕迹的演化   总被引:6,自引:0,他引:6       下载免费PDF全文
李海兵  曾令森 《地质科学》1997,32(2):181-192
韧性剪切带中,由于变形分解作用的存在,岩石发生递进变形过程中,产于共轴或非共轴递进缩短带内的变斑晶不发生旋转,而变斑晶内的包裹体痕迹是递进变形过程中遗留在变斑晶内的变形变质痕迹。利用未旋转斑晶中的包裹体痕迹可以确定早期面理的取向,寻找构造演化的时间标志,确定变形变质的关系及其演化史。对北祁连托勒牧场大型走滑韧性剪切带中石榴石、黑云母等变斑晶及包裹体痕迹的研究,揭示了变斑晶的生长和包、裹体痕迹与褶劈理的演化有着重要联系以及剪切变形过程中变形变质演化史、应变速率的变化。递进变形相应地发生递增变质,但两者存在着一定的差异性。  相似文献   

18.
Successions of FIAs(foliation inflection/intersection axes preserved within porphyroblasts) provide a relative time scale for deformation and metamorphism.In-situ dating of monazite grains preserved as inclusions within garnet and staurolite porphyroblasts within the foliations defining each FIA from such successions provides a rigorous approach to grouping ages that formed over extended periods of deformation and metamorphism.Matching age and FIA progressions confirms the suitability of this approach pl...  相似文献   

19.
Abstract Low-pressure/high-temperature (low-P/high-T) metamorphic rocks of the Cooma Complex, southeastern Australia, show evidence of an anticlockwise pressure-temperature-time-deformation (P-T-t-D) path, similar to those of some other low-P/high-T metamorphic areas of Australia. Prograde paths are reasonably well constrained in cordierite-andalusite schists, cordierite-K-feldspar gneisses and andalusite-K-feldspar gneisses. These paths are inferred to be convex to the temperature axis, involving increase in pressure with increase in temperature. Evidence of the retrograde path is inconclusive, but is consistent with approximately isobaric cooling, as are available isotopic data on the Cooma Granodiorite, which indicate initially rapid cooling following attainment of peak temperatures. The retrograde path is inconsistent with either a clockwise P-T-t-D path involving rapid or even moderate decompression immediately post-dating the peak of metamorphism, or a path in which the retrograde component simply reverses the prograde component, because both these paths should cross reactions forming cordierite from aluminosilicate, for which no evidence has been observed. Determination of the deformational-metamorphic history of the complex is not straightfoward and depends on careful examination of critical samples. Evidence necessary for successful elucidation of the prograde, and part of the retrograde, deformational-metamorphic history in the Cooma Complex includes: (1) sequentially grown porphyroblasts that can be timed relative to surrounding foliations; (2) partial replacement microstructures providing relative timing of metamorphic reactions that cannot be timed relative to foliation development; (3) a tectonic marker foliation (S4 at Cooma) that allows correlation of foliations from one location to another; and (4) single samples containing all of the foliations and all generations of porphyroblast growth within a single metamorphic zone. The latest two or three foliations involve low strain accumulation, allowing relative timing relationships between foliations and porphyroblasts to be more clearly determined. Sequential porphyroblast growth and foliation development in the cordierite-andalusite schists is examined for situations involving rotation and non-rotation of porphyroblasts relative to geographically fixed coordinates. Although the number of foliations developed varies in the rotational situation, depending on the deformation history proposed, the sequential order of porphyroblast growths does not differ from the non-rotational situation. Thus, whether or not porphyroblasts rotated in the Cooma rocks, the sequence of reactions, and therefore P-T-t paths inferred from the relative timing of porphyroblast growths, remain the same, for the deformational histories evaluated.  相似文献   

20.
Abstract Porphyroblast textures in a Karakorum phyllite reveal that porphyroblast growth was syn-tectonic with respect to a cleavage forming deformation. During and after porphyroblast growth it partitions the deformation such that zones of intensified cleavage are developed which wrap around the porphyroblast whilst the porphyroblast and its strain shadow undergo little deformation. Porphyroblast strain shadows comprise quartz, calcite and felspar with little mica, and are probably formed by solution transfer during deformation. Unless the deformation is so strongly partitioned that no deformation of the porphyroblasts and their immediate surrounds occurs, inequidimensional porphyroblasts will rotate. Porphyroblasts undergo some dissolution after they have finished growing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号