首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region 1 current to the region 2 current.  相似文献   

2.
A unified method for calculating the Dst index and its components using models of the magnetospheric magnetic field is proposed. The method is consistent with the procedure for calculating Dst from the ground-based magnetometer data. When calculating Dst, the quiet-day magnetic variation is subtracted from the model variation of the magnetic field of magnetospheric sources. The effect of induced currents flowing in the surface layer of the Earth’s crust is taken into account. The dynamics of the magnetospheric current systems during a storm is studied based on an analysis of the Dst components. The magnetic field components for a “quiet” day in June 1998 are studied. The calculations of the Dst components in the parabolid and T01 models demonstrate that the maximum contributions of the ring current and magnetotail current system to the Dst variation are comparable for the magnetic storm of June 25–26, 1998.  相似文献   

3.
2001年8月19日2011~2030UT,AE指数相对较小(40~130 nT),Cluster 卫星穿越磁尾电流片.利用Cluster 观测资料分析,发现宁静期间有双峰电流片存在,这期间没有明显的高速流,没有明显的电流片振荡. 同时,进一步分析双峰电流片中的离子特性发现:质子数密度Np在中性线(<Bx> = 0)附近相对较大,呈非对称性分布;质子温度分布比较均匀;在中性线两侧,质子y方向上的流速Vy方向相反. 最后讨论LHDI(低混杂漂移不稳定性)的非线性演化可能是形成宁静期间双峰电流片的主要机制. 这些对进一步完善电流片形成机制可能有很重要的意义.  相似文献   

4.
磁场模式是表述空间磁场的一种有效工具,对于研究磁层大尺度电流系的发展变化和辐射带粒子具有重要意义.本文介绍了三种主要的磁层磁场模式,即经验模式、抛物面模式和事件导向模式,结合模式的原理和特点,对模式的改进情况和性能检验进行了详细论述,并对三种模式进行了对比分析.三种模式都能对暴时磁场进行动态模拟.最近的Tsyganenko模式考虑了太阳风的历史作用,每个磁场源都有自己的松弛时间尺度及驱动函数;抛物面模式A01中增加了场向电流及窄尾流效应;事件导向模式G03增加了非对称环电流和局地窄尾流片效应.  相似文献   

5.
Geomagnetic activity dependence of O in transit from the ionosphere   总被引:1,自引:0,他引:1  
Energetic O+ ions have important dynamic effects on the ring current. Insights into the effects of O+ on ring current dynamics have come primarily from models, not observations. Here, we discuss observations of O+ populations escaping from the ionosphere and their access to the plasma sheet and ring current. We review data establishing that a significant flux of O+ escapes the ionosphere during geomagnetically quiet intervals. We then estimate the relative magnitude of the O+ population in transit between the ionosphere and ring current during quiet intervals before geomagnetic storms. Our analysis suggests that dynamic reconfigurations of the magnetosphere during geomagnetic storms significantly alter the O+ transport paths from the ionosphere to the ring current. During these reconfigurations some of the pre-existing, quiet time, in-transit O+ populations are captured on magnetic field lines leading to the ring current. The prompt appearance of this O+ population in the ring current could modify the evolution of the ring current in the storm growth phase. Our analysis suggests that the consequences of an activity-dependent O+ transport path to the ring current should be systematically investigated.  相似文献   

6.
Since the discovery of the magnetosphere, it has been known that the currents flowing in the magnetosphere contribute toSq, the regular daily variation in the earth's surface magnetic field. The early models, however, were not very accurate in the vicinity of the earth. The magnetospheric contribution toSq has therefore been recalculated by direct integration over the three major magnetospheric current systems; magnetopause, tail and ring. The finite electrical conductivity of the earth, which increases the horizontal and decreases the vertical components of the magnetospheric field at the earth's surface, has been taken into account. The magnetospheric currents are found to contribute 12 nanotesla to the day to night difference in the mid-latitudeSq pattern for steady, quiet magnetospheric conditions. They also contribute to the annual variation in the surface field and must be considered an important source of the observed day to day variation in theSq pattern.  相似文献   

7.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

8.
Simulations of quiet time terrestrial H-ENA fluxes are shown. The simulations are obtained by using average proton differential fluxes from AMPTE-CCE/CHEM. A functional form which provides the ring current quiet time proton fluxes as a function of energy, L-shell and magnetic local time is also used. The energy neutral atom (ENA) fluxes are simulated at a specific location along the Geotail spacecraft orbit, where ENA data have been collected by the HEP-LD spectrometer. A detailed analysis of the ENA generation along the instrument look directions is presented, in order to evaluate the significance of the ENA signal with respect to the locations of ion sources and to the instrument energy resolution. At energies above 70 keV, we show that the ENA energy is directly related to the ion source location.  相似文献   

9.
The magnetospheric ion composition spectrometer MICS on the Swedish Viking satellite provided measurements of the ion composition in the energy range 10.1 keV/e\leqE/Q\leq326.0 keV/e. Data obtained during orbit 842 were used to investigate the ion distribution in the northern polar cusp and its vicinity. The satellite traversed the outer ring current, boundary region, cusp proper and plasma mantle during its poleward movement. H+ and He++ ions were encountered in all of these regions. He+ ions were present only in the ring current. The number of O+ and O++ ions was very small. Heavy high-charge state ions typical for the solar wind were observed for the first time, most of them in the poleward part of the boundary region and in the cusp proper. The H+ ions exhibited two periods with high intensities. One of them, called the BR/CP event, appeared at energies up to 50 keV. It started at the equatorward limit of the boundary region and continued into the cusp proper. Energy spectra indicate a ring current origin for the BR/CP event. Pitch angle distributions show downward streaming of H+ ions at its equatorward limit and upward streaming on the poleward side. This event is interpreted as the result of pitch angle scattering of ring current ions by fluctuations in the magnetopause current layer in combination with poleward convection. The other of the two periods with high H+ ion intensities, called the accelerated ion event, was superimposed on the BR/CP event. It was restricted to energies \leq15 keV and occurred in the poleward part of the boundary region. This event is regarded as the high-energy tail of magnetosheath ions that were accelerated while penetrating into the magnetosphere. The cusp region thus contains ions of magnetospheric as well as of magnetosheath origin. The appearance of the ions depends, in addition to the ion source, on the magnetic field configuration and dynamic processes inside and close to the cusp.  相似文献   

10.
The medium-scale (50–200 km in the projection onto ionospheric altitudes) splitting of the field-aligned currents flowing out of the ionosphere has been considered in the case when the approximation of the distribution function of hot magnetospheric ions by the kappa distribution is taken into account. It was assumed that the condition of magnetostatic equilibrium and isotropy of hot magnetospheric plasma pressure is satisfied in the magnetosphere. The theoretical parameter of magnetospheric plasma hot stratification has been obtained for the case of ion kappa distribution. The parameter characterizes the number of structures into which the band of the field-aligned current flowing out of the ionosphere is split. The theoretical predictions have been compared with the observations on the Intercosmos-Bulgaria-1300 and Aureol-3 satellites. It has been indicated that the number of measured structures is in better agreement with that of the theoretically predicted structures in 70% of cases if the non-Maxwellian tails of ion distribution functions are taken into account.  相似文献   

11.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.  相似文献   

12.
A review of modern dynamic models of the Earth’s magnetosphere (the A2000 paraboloid model and Tsyganenko’s T01 model) is presented. For the magnetic storm of January 9–11, 1997, the results of joint calculations of the magnetospheric magnetic field are presented and contributions of the large-scale magnetospheric currents to the D st variations are analyzed. Both models were shown to be well consistent with measurement data; the contribution of the magnetotail current system to D st is comparable to the contribution of the ring current. At the same time, the relative dynamics of magnetospheric current systems are different in different models. The differences in the magnetic field variation profiles for various current systems calculated by the A2000 and T01 models are explained by model parameterizations.  相似文献   

13.
The possibility to estimate plasma sheet parameters from low-altitude measurements looks quite attractive, but it critically depends on how isotropic the plasma pressure is in the flux tube. To evaluate the ion pressure anisotropy we compare the values of pressure in the ionospheric and equatorial parts of the field line. Ionospheric values were computed from proton measurements at NOAA low-altitude satellites, they were compared with pressure estimates computed from empirical magnetic field models as well as with average values known from direct plasma sheet measurements. Three different methods of mapping the plasma pressure from plasma sheet to low altitude have been tried; each uses the particle isotropic boundaries observed at low altitudes and/or computed from magnetospheric models. Excluding observations obtained during substorm expansion, from these comparisons we conclude that in the plasma sheet, at geocentric distances 9–20RE, the pressure estimates in the ionospheric and equatorial parts of the plasma sheet flux tube agree very well, suggesting a good pressure isotropy and thus justifying a possibility to monitor the plasma sheet parameters based on low-altitude measurements. The results also illustrate the usefulness of isotropic boundaries as a label of tail current intensity and as reliable tool for establishing mapping between magnetosphere and ionosphere.  相似文献   

14.
The ring current dynamics during the magnetic storm has been studied in the work. The response of the magnetospheric current systems to the external influence of the solar wind, specifically, resulting in the development of the asymmetric ring current component, has been calculated using the magnetic field paraboloid model. The asymmetric ring current has been considered as a family of spatial current circuits in the Northern and Southern hemispheres, composed of the zones of the partial ring current in the geomagnetic equator plane, which close through the system of field-aligned currents into the ionosphere. The value of the total partial ring current has been estimated by comparing the calculated asymmetry of the magnetospheric magnetic field at the geomagnetic equator with the value of the Asym-H geomagnetic index. The variations in the symmetric and asymmetric components of the ring current magnetic field have been calculated for the magnetic storm of November 6–14, 2004. The contributions of the magnetospheric current systems to the Dst and AU geomagnetic indices have been calculated.  相似文献   

15.
The idea of two separate storm time ring currents, a symmetric and an asymmetric one has accepted since the 1960s. The existence of a symmetric equatorial ring current was concluded from Dst. However, the asymmetric development of the low-latitude geomagnetic disturbance field during storms lead to the assumption of the real existence of an asymmetric ring current. I think it is time to inquire whether this conception is correct. Thus, I have investigated the development of the low-latitude geomagnetic field during all the magnetic local times under disturbed and quiet conditions. The storm on February 6–9, 1986 and a statistical analysis of many storms has shown that the asymmetry does not vanish during the storm recovery phase. The ratio between the recovery phase asymmetry and the main phase asymmetry is low only for powerful storms. Storms of moderate intensity show the opposite. The global picture of the field evolution of the February storm shows clear differences at different local times. For instance the main phase and recovery phase start time does not coincide with Dst. Also the ring current decay is not the same at different local times. Therefore, Dst gives an incorrect picture of the field development. Moreover, asymmetry does not disappear during international quiet days as the investigation of the low-latitude geomagnetic field shows. Considering all these observations, I think we must revise our ideas about the ring current. In my opinion only one ring current exists and this is an asymmetric one. This asymmetry increases during storms and develops rather fast to more or less symmetric conditions. However, in no case is itjustified to conclude from Dst that a symmetric ring current exists.  相似文献   

16.
The contribution of resonant wave-particle interactions to the formation and decay of the magnetospheric ring current is analysed in the framework of a self-consistent set of equations which take into account azimuthal plasmasphere asymmetry. It is shown that the cyclotron interaction of westward drifting energetic protons with Alfven waves in the evening-side plasmaspheric bulge region leads to the formation of a ring current asymmetry located near 18:00 MLT. The time-scale of this asymmetry is determined by the proton drift time through the plasmaspheric bulge and is about 1 - 3 h. A symmetrical ring current decays mainly due to charge exchange processes. The theory is compared with known experimental data on ions and waves in the ring current and on low-latitude magnetic disturbances. New low-latitude magnetometer data on the magnetic storm of 24 - 26 July 1986 are also discussed. The model presented explains the observed localization of an asymmetrical ring current loop in the evening sector and the difference in relaxation time-scales of the asymmetry and the Dst index. It also explains measured wave turbulence levels in the evening-side plasmasphere and wave observation statistics.  相似文献   

17.
Fluid theories explain the origin of region-2 field-aligned currents as the closure of the ring current, driven itself by the azimuthal pressure gradients generated in the magnetospheric ring plasma by the sunward convection. Although the structure of pressure gradients appears experimentally complex, observations confirm that a close connection exists between the region-2 field-aligned currents and the ring current. The fluid linear theory of the adiabatic transport by convection of the ring plasma gives a first estimate of this process, and leads ultimately to phase quadrature (in terms of magnetic local time) between the region-2 field-aligned currents and the convection potential. When significant non-adiabatic processes are taken into account, such as precipitations at auroral latitudes, the theoretical phase difference rotates toward opposition. We determine experimentally the phase relationship between the region-2 field-aligned currents and the convection potential from recent statistics, depending on the magnetic activity index Kp, and performed from the EISCAT data base. For geometrical reasons of sufficient probing of region 2, it is only computed in the case of a moderate magnetic activity corresponding to 2\leqKp<4. Region-2 field-aligned currents are found to be in phase opposition with the convection electrostatic potential at auroral latitudes. This confirms the importance of non adiabatic processes, especially ion losses, in the generation of region-2 field-aligned currents, as theoretically suggested.  相似文献   

18.
19.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

20.
The model calculation of a magnetic disturbance, which was registered at Colaba observatory (India) during the historic giant magnetic storm on September 1–2, 1859, is illustrated. The calculation demonstrates that the observed, unusually fast, 2-h main phase of this storm, when the negative amplitude of the geomagnetic field vector H component was ?1600 nT, and an extremely fast (1.5-h) initial field recovery phase from the maximum to the ?110 nT amplitude can be generated. The following models of the magnetospheric current systems were used in the calculations: the ring current (DR), the magnetospheric magnetopause current (DCF), the magnetotail current system (DT), and the high-latitude current system (DP). The unusual time variation in the registered geomagnetic disturbance is related to the probable fast and considerable equatorward shift of the high-latitude currents during the main phase of the analyzed giant storm and to the same fast backward motion of these currents during the initial field recovery phase. The unusually large amplitude of the registered geomagnetic disturbance could have been caused by the total contribution of the indicated magnetospheric current systems during the time when the storm was generated as a result of the interaction between the magnetosphere and the solar plasma ejected during the gigantic solar flare before the storm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号