首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
PCA (Pecora Escarpment) 02007 and Dhofar 489 are both meteorites from the feldspathic highlands of the Moon. PCA 02007 is a feldspathic breccia consisting of lithified regolith from the lunar surface. It has concentrations of both incompatible and siderophile elements that are at the high end of the ranges for feldspathic lunar meteorites. Dhofar 489 is a feldspathic breccia composed mainly of impact-melted material from an unknown depth beneath the regolith. Concentrations of incompatible and siderophile elements are the lowest among brecciated lunar meteorites. Among 19 known feldspathic lunar meteorites, all of which presumably originate from random locations in the highlands, concentrations of incompatible elements like Sm and Th tend to increase with those of siderophile elements like Ir. Feldspathic meteorites with high concentrations of both suites of elements are usually regolith breccias. Iridium derives mainly from micrometeorites that accumulate in the regolith with duration of surface exposure. Micrometeorites have low concentrations of incompatible elements, however, so the correlation must reflect a three-component system. We postulate that the correlation between Sm and Ir occurs because the surface of the Feldspathic Highlands Terrane has become increasingly contaminated with time in Sm-rich material from the Procellarum KREEP Terrane that has been redistributed across the lunar surface by impacts of moderate-sized, post-basin impacts. The most Sm-rich regolith breccias among feldspathic lunar meteorites are about 3× enriched compared to the most Sm-poor breccias, but this level of enrichment requires only a few percent Sm-rich material typical of the Procellarum KREEP Terrane. The meteorite data suggest that nowhere in the feldspathic highlands are the concentrations of K, rare earths, and Th measured by the Lunar Prospector mission at the surface representative of the underlying “bedrock;” all surfaces covered by old regolith (as opposed to fresh ejecta) are at least slightly contaminated. Dhofar 489 is one of 15 paired lunar-meteorite stones from Oman (total mass of meteorite: 1037 g). On the basis of its unusually high Mg/Fe ratio, the meteorite is likely to have originated from northern feldspathic highlands.  相似文献   

2.
We present new compositional data for six feldspathic lunar meteorites, two from cold deserts (Yamato 791197 and 82192) and four from hot deserts (Dhofar 025, Northwest Africa 482, and Dar al Gani 262 and 400). The concentrations of FeO (or Al2O3) and Th (or any other incompatible element) together provide first-order compositional information about lunar polymict samples (breccias and regoliths) and regions of the lunar surface observed from orbit. Concentrations of both elements on the lunar surface have been determined from data acquired by orbiting spacecraft, although the derived concentrations have large uncertainties and some systematic errors compared to sample data. Within the uncertainties and errors in the concentrations derived from orbital data, the distribution of FeO and Th concentrations among lunar meteorites, which represent ∼18 source regions on the lunar surface, is consistent with that of 18 random samples from the surface. Approximately 11 of the lunar meteorites are low-FeO and low-Th breccias, consistent with large regions of the lunar surface, particularly the northern farside highlands. Almost all regoliths from Apollo sites, on the other hand, have larger concentrations of both elements because they contain Fe-rich volcanic lithologies from the nearside maria and Th-rich lithologies from the high-Th anomaly in the northwestern nearside. The feldspathic lunar meteorites thus offer our best estimate of the composition of the surface of the feldspathic highlands, and we provide such an estimate based on the eight most well-characterized feldspathic lunar meteorites. The variable but high (on average) Mg/Fe ratio of the feldspathic lunar meteorites compared to ferroan anorthosites confirms a hypothesis that much of the plagioclase at the surface of the feldspathic highlands is associated with high-Mg/Fe feldspathic rocks such as magnesian granulitic breccia, not ferroan anorthosite. Geochemically, the high-Mg/Fe breccias appear to be unrelated to the mafic magnesian-suite rocks of the Apollo collection. Models for the formation of the upper lunar crust as a simple flotation cumulate composed mainly of ferroan anorthosite do not account for the complexity of the crust as inferred from the feldspathic lunar meteorites.  相似文献   

3.
The Antarctic lunar meteorite Meteorite Hills (MET) 01210 is a polymict regolith breccia, dominantly composed of mare basalt components. One relatively large (2.7 × 4.7 mm) basalt clast in MET 01210 (MET basalt) shows remarkable mineralogical similarities to the lunar-meteorite crystalline mare basalts Yamato (Y)-793169, Asuka (A)-881757, and Miller Range (MIL) 05035. All four basalts have similar rock texture, mineral assemblage, mineral composition, pyroxene crystallization trend, and pyroxene exsolution lamellae. The estimated TiO2 contents (∼2.0 wt%) of the MET basalt and MIL 05035 are close to the bulk-rock TiO2 contents of Y-793169 and A-881757. These similarities suggest that Y-793169, A-881757, MIL 05035, and the MET basalt came from the same basalt flow, which we designate the YAMM basalt. The source-basalt pairing of the YAMM is also supported by their similar REE abundances, crystallization ages (approx. 3.8-3.9 Ga), and isotopic compositions (low U/Pb, low Rb/Sr, and high Sm/Nd). The pyroxene exsolution lamellae, which are unusually coarse (up to a few microns) by mare standards, imply a relatively slow cooling in an unusually thick lava and/or subsequent annealing within a cryptomare. Reported noble gas and CRE data with close launch ages (∼1 Ma) and ejection depths (deeper than several meters) among the four meteorites further indicate their simultaneous ejection from the moon. Despite the marginally close terrestrial ages, pairing in the conventional Earth-entry sense seems unlikely because of the remote recovery sites among the YAMM meteorites.The high abundance (68%) of mare components in MET 01210 estimated from a two-component mixing model calculation could have resulted from either lateral mixing at a mare-highland boundary or vertical mixing in a cryptomare. The proportion of mare materials in MET 01210 is greater than in Apollo core samples at the mare-highland boundary. The burial depth (>several meters deep) inferred from the lack of surface irradiation of MET 01210 exceeds the typical mare regolith thickness (a few meters). Thus, the source of the YAMM meteorites is likely a terrain of locally high mare-highland mixing within a cryptomare. We searched for a possible source crater of the YAMM meteorites within the well-defined cryptomare, based on the multiple constraints obtained from this study and published data. An unnamed 1.4 km-diameter crater (53°W, 44.5°S) on the floor of the Schickard crater is the most suitable source for the YAMM meteorites.The 238U/204Pb (μ) value of the YAMM basalts is extremely low, relative to those of the Apollo mare basalts, but comparable to those of the Luna 24 very low-Ti basalts. The low-μ source indicates a derivation from a less differentiated mantle with a lack of KREEP components. Although the chemical sources of materials and heat source of melting might be independent, the heat source that generated the source magma of the YAMM and Luna 24 basalts may not be related to KREEP, unlike the case of the Apollo basalts. The distinct chemical and isotopic compositions of mantle sources between the Apollo basalts and the YAMM/Lunar 24 basalts imply differences in mantle composition and thermal evolution between the Procellarum KREEP Terrane (PKT) and non-PKT regions of the nearside.  相似文献   

4.
In order to improve our understanding of impact history and surface geology on the Moon, we obtained 40Ar-39Ar incremental heating age data and major + trace element compositions of anorthositic and melt breccia clasts from Apollo 16 feldspathic fragmental breccias 67016 and 67455. These breccias represent the Descartes terrain, a regional unit often proposed to be ejecta from the nearby Nectaris basin. The goal of this work is to better constrain the emplacement age and provenance of the Descartes breccias.Four anorthositic clasts from 67016 yielded well-defined 40Ar-39Ar plateau ages ranging from 3842 ± 19 to 3875 ± 20 Ma. Replicate analyses of these clasts all agree within measurement error, with only slight evidence for either inheritance or younger disturbance. In contrast, fragment-laden melt breccia clasts from 67016 yielded apparent plateau ages of 4.0-4.2 Ga with indications of even older material (to 4.5 Ga) in the high-T fractions. Argon release spectra of the 67455 clasts are more variable with evidence for reheating at 2.0-2.5 Ga. We obtained plateau ages of 3801 ± 29 to 4012 ± 21 Ma for three anorthositic clasts, and 3987 ± 21 Ma for one melt breccia clast. The anorthositic clasts from these breccias and fragments extracted from North Ray crater regolith (Maurer et al., 1978) define a combined age of 3866 ± 9 Ma, which we interpret as the assembly age of the feldspathic fragmental breccia unit sampled at North Ray crater. Systematic variations in diagnostic trace element ratios (Sr/Ba, Ti/Sm, Sc/Sm) with incompatible element abundances show that ferroan anorthositic rocks and KREEP-bearing lithologies contributed to the clast population.The Descartes breccias likely were deposited as a coherent lithologic unit in a single event. Their regional distribution suggests emplacement as basin ejecta. An assembly age of 3866 ± 9 Ma would be identical with the accepted age of the Imbrium basin, and trace element compositions are consistent with a provenance in the Procellarum-KREEP Terrane. The combination of age and provenance constraints points toward deposition of the Descartes breccias as ejecta from the Imbrium basin rather than Nectaris. Diffusion modeling shows that the older apparent plateau ages of the melt brecia clasts plausibly result from incomplete degassing of ancient crust during emplacement of the Descartes breccias. Heating steps in the melt breccia clasts that approach the primary crystallization ages of lunar anorthosites show that earlier impact events did not completely outgas the upper crust.  相似文献   

5.
Miller Range (MIL) 05035 is a lunar gabbroic meteorite. The mineralogy, Fe/Mn ratios in olivine and pyroxene, bulk-rock chemical composition and the bulk oxygen isotope values (δ17O = 2.86-2.97‰ and δ18O = 5.47-5.71‰) are similar to those of other mare basalts, and are taken as supporting evidence for a lunar origin for this meteorite. The sample is dominated by pyroxene grains (54-61% by area mode of thin section) along with large plagioclase feldspar (25-36% by mode) and accessory quartz, ilmenite, spinel, apatite and troilite. The bulk-rock major element composition of MIL 05035 indicates that the sample has a very low-Ti (VLT) to low-Ti lunar heritage (we measure bulk TiO2 to be 0.9 Wt.%) and has low bulk incompatible trace element (ITE) concentrations, akin to samples from the VLT mare basalt suite. To account for these geochemical characteristics we hypothesize that MIL 05035’s parental melt was derived from a mantle region dominated by early cumulates of the magma ocean (comprised principally of olivine and orthopyroxene). MIL 05035 is likely launch paired with the Asuka-881757 and Yamato-793169 basaltic lunar meteorites and the basaltic regolith breccia MET 01210. This group of meteorites (Y/A/M/M) therefore may be a part of a stratigraphic column consisting of an upper regolith environment underlain by a coarsening downwards basalt lava flow.  相似文献   

6.
We performed a petrologic, mineralogical, geochemical, and isotopic study of several lithologies in the Y-86032 feldspathic breccia. This study leads us to conclude that Y-86032 likely originated on the lunar farside. Y-86032 is composed of several types of feldspathic clasts, granulitic breccias, and minor basaltic clasts set in a clastic matrix. We identify an “An97 anorthosite” that has An contents similar to those of nearside FANs. Mg′ (= molar Mg/(Mg + Fe) × 100) values vary significantly from ∼45 to ∼80 covering the ranges of both nearside FANs and the Mg′ gap between FANs and the Mg-suite. A light-gray feldspathic (LG) breccia making up ∼20% of the investigated slab (5.2 × 3.6 cm2) mainly consists of fragments of anorthosites (“An93 anorthosite”) more sodic than nearside FANs. LG also contains an augite-plagioclase clast which either could be genetically related to the An93 anorthosite or to slowly-cooled basaltic magma intruded into the precursor rock. The Na-rich nature of both An93 anorthosite and this clast indicates that the LG breccia was derived from a relatively Na-rich but incompatible-element-poor source. The Mg′ variation indicates that the “An97 anorthosite” is a genomict breccia of several types of primary anorthosites. Granulitic breccias in Y-86032 have relatively high Mg′ in mafic minerals. The highest Mg′ values in mafic minerals for the “An97 anorthosite” and granulitic breccias are similar to those of Mg-rich lithologies recently described in Dhofar 489. Basaltic clasts in the dark-gray matrix are aluminous, and the zoning trends of pyroxene are similar to those of VLT or LT basalts. The crystallization of these basaltic clasts pre-date the lithification age of the clastic matrix at ∼3.8 Ga. The low K contents of plagioclase in both the anorthositic and basaltic clasts and generally low incompatible element abundances in all the lithologies in Y-86032 indicate that KREEP was not involved during the formation of the precursor lithologies. This observation further suggests that urKREEP did not exist in the source regions of these igneous lithologies. All these facts support the idea that Y-86032 was derived from a region far distant from the PKT and that the lithic clasts and fragments are indigenous to that region. An An97 anorthositic clast studied here has distinct Sm-Nd isotopic systematics from those previously found for another An97 anorthositic clast and “An93 anorthosite”, and suggests either that An97 anorthosites come from isotopically diverse sources, or that the Sm-Nd isotopic systematics of this clast were reset ∼4.3 Ga ago. These lines of geochemical, isotopic, and petrologic evidence suggest that the lunar crust is geochemically more heterogeneous than previously thought.  相似文献   

7.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

8.
We present compositional data for 358 lithic fragments (2-4-mm size range) and 15 soils (<1-mm fines) from regolith samples collected at the Apollo 12 site. The regolith is dominated by mare basalt, KREEP impact-melt breccias (crystalline and glassy), and regolith breccias. Minor components include alkali anorthosite, alkali norite, granite, quartz monzogabbro, and anorthositic rocks from the feldspathic highlands. The typical KREEP impact-melt breccia of Apollo 12 (mean Th: 16 μg/g) is similar to that of the Apollo 14 site (16 μg/g), 180 km away. Both contain a minor component (0.3% at Apollo 12, 0.6% at Apollo 14) of FeNi metal that is dissimilar to metal in ordinary chondrites but is similar to metal found in Apollo 16 impact-melt breccias. The Apollo 12 regolith contains another variety of KREEP impact-melt breccia that differs from any type of breccia described from the Apollo sites in being substantially richer in Th (30 μg/g) but with only moderate concentrations of K. It is, however, similar in composition to the melt breccia lithology in lunar meteorite Sayh al Uhaymir 169. The average composition of typical mature soil corresponds to a mixture of 65% mare basalt, 20% typical KREEP impact-melt breccia, 7% high-Th impact-melt breccia, 6% feldspathic material, 2.6% alkali noritic anorthosite, and 0.9% CM chondrite. Thus, although the site was resurfaced by basaltic volcanism 3.1-3.3 Ga ago, a third of the material in the present regolith is of nonmare origin, mainly in the form of KREEP impact-melt breccias and glass. These materials occur in the Apollo 12 regolith mainly as a result of moderate-sized impacts into surrounding Fra Mauro and Alpes Formations that formed craters Copernicus (93 km diameter, 406 km distance), Reinhold (48 km diameter, 196 km distance), and possibly Lansberg (39 km diameter, 108 km distance), aided by excavation of basalt interlayers and mixing of regolith by small, local impacts. Anomalous immature soil samples 12024, 12032, and 12033 contain a lesser proportion of mare basalt and a correspondingly greater proportion of KREEP lithologies. These samples consist mainly of fossil or paleoregolith, likely ejecta from Copernicus, that was buried beneath the mixing zone of micrometeorite gardening, and then brought to the near surface by local craters such as Head, Bench, and Sharp Craters.  相似文献   

9.
Kalahari 008 and 009 are two lunar meteorites that were found close to each other in Botswana. Kalahari 008 is a typical lunar anorthositic breccia; Kalahari 009 a monomict breccia with basaltic composition and mineralogy. Based on minor and trace elements Kalahari 009 is classified as VLT (very-low-Ti) mare basalt with extremely low contents of incompatible elements, including the REE. The Lu-Hf data define an age of 4286 ± 95 Ma indicating that Kalahari 009 is one of the oldest known basalt samples from the Moon. It provides evidence for lunar basalt volcanism prior to 4.1 Ga (pre-Nectarian) and may represent the first sample from a cryptomare. The very radiogenic initial 176Hf/177Hf (εHf = +12.9 ± 4.6), the low REE, Th and Ti concentrations indicate that Kalahari 009 formed from re-melting of mantle material that had undergone strong incompatible trace element depletion early in lunar history. This unusually depleted composition points toward a hitherto unsampled basalt source region for the lunar interior that may represent a new depleted endmember source for low-Ti mare basalt volcanism. Apparently, the Moon became chemically very heterogeneous at an early stage in its history and different cumulate sources are responsible for the diverse mare basalt types.Evidence that Kalahari 008 and 009 may be paired includes the similar fayalite content of their olivine, the identical initial Hf isotope composition, the exceptionally low exposure ages of both rocks and the fact that they were found close to each other. Since cryptomaria are covered by highland ejecta, it is possible that these rocks are from the boundary area, where basalt deposits are covered by highland ejecta. The concentrations of cosmogenic radionuclides and trapped noble gases are unusually low in both rocks, although Kalahari 008 contains slightly higher concentrations. A likely reason for this difference is that Kalahari 008 is a polymict breccia containing a briefly exposed regolith, while Kalahari 009 is a monomict brecciated rock that may never have been at the surface of the Moon.Altogether, the compositions of Kalahari 008 and 009 permit new insight into early lunar evolution, as both meteorites sample lunar reservoirs hitherto unsampled by spacecraft missions. The very low Th and REE content of Kalahari 009 as well as the depletion in Sm and the lack of a KREEP-like signature in Kalahari 008 point to a possible source far from the influence of the Procellarum-KREEP Terrane, possibly the lunar farside.  相似文献   

10.
To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites.  相似文献   

11.
Lunar geochemistry as told by lunar meteorites   总被引:7,自引:0,他引:7  
About 36 lunar meteorites have been found in cold and hot deserts since the first one was found in 1979 in Antarctica. All are random samples ejected from unknown locations on the Moon by meteoroid impacts. Lithologically and compositionally there are three extreme types: (1) brecciated anorthosites with high Al2O3 (26–31%), low FeO (3–6%), and low incompatible elements (e.g., <1 μg/g Th), (2) basalts and brecciated basalts with high FeO (18–22%), moderately low Al2O3 (8–10%) and incompatible elements (0.4–2.1 μg/g Th), and (3) an impact-melt breccia of noritic composition (16% Al2O3, 11% FeO) with very high concentrations of incompatible elements (33 μg/g Th), a lithology that is identified as KREEP on the basis of its similarity to Apollo samples of that designation. Several meteorites are polymict breccias of intermediate composition because they contain both anorthosite and basalt. Despite the large range in compositions, a variety of compositional parameters together distinguish lunar meteorites from terrestrial materials. Compositional and petrographic data for lunar meteorites, when combined with mineralogical and compositional data obtained from orbiting spacecraft in the 1990s, suggest that Apollo samples identified with the magnesian (Mg-rich) suite of nonmare rocks (norite, troctolite, dunite, alkali anorthosite, and KREEP) are all products of a small, geochemically anomalous (noritic, high Th) region of crust known as the Procellarum KREEP Terrane and are not, as generally assumed, indigenous to the vast expanse of typical feldspathic crust known as the Feldspathic Highlands Terrane. Magnesian-suite rocks such as those of the Apollo collection do not occur as clasts in the feldspathic lunar meteorites. The misconception is a consequence of four historical factors: (1) the Moon has long been viewed as simply bimodal in geology, mare or highlands, (2) one of the last, large basin-forming bolides impacted in the Procellarum KREEP Terrane, dispersing Th-rich material, (3) although it was not known at the time, the Apollo missions all landed in or near the anomalous Procellarum KREEP Terrane and collected many Th-rich samples formed therein, and (4) the Apollo samples were interpreted and models for lunar crust formation developed without recognition of the anomaly because global data provided by orbiting missions and lunar meteorites were obtained only years later.  相似文献   

12.
The manned Apollo 11, 12, 14 and 15 and the automated Luna 16 lunar missions have provided us with lunar rock and regolith (soil) samples from a number of geologically distinct sites. The mare regions were sampled by Apollo 11, 12 and Luna 16, whereas Apollo 14 landed on a terrain with more relief, the Fra Mauro Formation which represents an ejecta blanket from the Imbrian Basin, and Apollo 15 touched down near the lunar highlands. The samples collected consist of a mixture, mainly of basalt, breccia and regolith (soil-particulate matter, generally < 1 cm in size). The basalts show considerable variation in texture, mineralogy and chemistry and probably represent fragments from various parts of relatively thin and extensive lava flows in the maria. The breccias represent regolith material which was indurated to varying degrees by impact events. The regolith is a product of the breakdown, again by impact, of coherent rock masses of basalt and breccia.  相似文献   

13.
The Bencubbin meteorite is a polymict breccia consisting of a host fraction of ~60% metal and ~40% ferromagnesian silicates and a selection of carbonaceous, ordinary and ‘enstatite’ chondritic clasts. Concentrations of 27 elements were determined by neutron activation in replicate samples of the host silicates and the ordinary and carbonaceous chondritic clasts; 12 elements were determined in the host metal. Compositional data for the ordinary chondrite clast indicate a classification of LL4 ± 1. Refractory element data for the carbonaceous chondrite clast indicate that it belongs to the CI-CM-CO clan; its volatile element abundances are intermediate between those of CM and CO chondrites. Abundances of nonvolatile elements in the silicate host are similar to those in the carbonaceous chondrite clast and in CM chondrites; the rare earths are unfractionated. We conclude that it is not achondritic as previously designated, but chondritic and that it is probably related to the CI-CM-CO clan; its volatile abundances are lower than those in CO chondrites. Oxygen isotope data are consistent with these classifications. Host metal in Bencubbin and in the closely related Weatherford meteorite has low abundances of moderately volatile siderophiles; among iron meteorite groups its nearest relative is group IIIF.We suggest that Bencubbin and Weatherford formed as a result of an impact event on a carbonaceous chondrite regolith. The impact generated an ‘instant magma’ that trapped and surrounded regolithic clasts to form the polymict breccia. The parent of this ‘magma’ was probably the regolith itself, perhaps mainly consisting of the so-called ‘enstatite’ chondrite materials. Accretion of such a variety of materials to a small parent body was probably only possible in the asteroid belt.  相似文献   

14.
Polymict ureilites DaG 164/165, DaG 319, DaG 665, and EET 83309 are regolith breccias composed mainly of monomict ureilite-like material, but containing ∼2 vol% of feldspathic components. We characterized 171 feldspathic clasts in these meteorites in terms of texture, mineralogy, and mineral compositions. Based on this characterization we identified three populations of clasts, each of which appears to represent a common igneous (generally basaltic) lithology and whose mafic minerals show a normal igneous fractionation trend of near-constant Fe/Mn ratio over a range of Fe/Mg ratios that extend to much higher values than those in monomict ureilites. The melts represented by these populations are unlikely to be impact melts, because the ubiquitous presence of carbon in polymict ureilites (the regolith of the ureilite parent body) implies that impact melts would have crystallized under conditions of carbon redox control and therefore have highly magnesian mafic mineral compositions with constant Mn/Mg ratio. Therefore, these melts appear to be indigenous products of igneous differentiation on the ureilite parent body (UPB), complementary to the olivine-pigeonite residues represented by the majority of monomict ureilites.The most abundant population is characterized by albitic plagioclase in association with pyroxenes, phosphates, ilmenite, silica, and incompatible-element enriched glass. Model calculations suggest that it formed by extensive fractional crystallization of the earliest melt(s) of precursor materials from which the most magnesian (shallowest) olivine-pigeonite ureilites formed. A less abundant population, characterized by labradoritic plagioclase, may have formed from melts complementary to more ferroan olivine-pigeonite ureilites, and derived from deeper in the UPB. The third population, characterized by the presence of olivine and augite, could only have formed from melts produced at greater depths in the UPB than the olivine-pigeonite ureilites. Many other feldspathic clasts cannot be positively associated with any of these three populations, because their mafic mineral compositions exhibit carbon redox control. However, they may be products of early crystallization of basaltic melts produced on the UPB, before carbon was exhausted by reduction.Partial melting on the ureilite parent body was a fractional (or incremental) process. Melts were produced early in UPB history, and most likely extracted rapidly, thus preserving primitive chemical and oxygen isotopic signatures in the residues.  相似文献   

15.
Ureilites are ultramafic achondrites that exhibit heterogeneity in mg# and oxygen isotope ratios between different meteorites. Polymict ureilites represent near-surface material of the ureilite parent asteroid(s). Electron microprobe analyses of >500 olivine and pyroxene clasts in several polymict ureilites reveal a statistically identical range of compositions to that shown by unbrecciated ureilites, suggesting derivation from a single parent asteroid. Many ureilitic clasts have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 unbrecciated ureilite (here termed the “Hughes cluster”). Some polymict samples also contain lithic clasts derived from oxidized impactors. The presence of several common distinctive lithologies within polymict ureilites is additional evidence that ureilites were derived from a single parent asteroid.In situ oxygen three isotope analyses were made on individual ureilite minerals and lithic clasts, using a secondary ion mass spectrometer (SIMS) with precision typically better than 0.2-0.4‰ (2SD) for δ18O and δ17O. Oxygen isotope ratios of ureilitic clasts fall on a narrow trend along the CCAM line, covering the range for unbrecciated ureilites, and show a good anti-correlation with mineral mg#. SIMS analysis identifies one ferroan lithic clast as an R-chondrite, while a second ferroan clast is unlike any known meteorite. An exotic enstatite grain is derived from an enstatite chondrite or aubrite, and another pyroxene grain with Δ17O of −0.4 ± 0.2‰ is unrelated to any known meteorite type.Ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85 which include the melt-inclusion-bearing “Hughes cluster” ureilites. Thus melt was present in regions of the parent ureilite asteroid with a bulk mg# > 85 when the asteroid was disrupted by impact, giving rise to two types of ureilites: common ferroan ones that were residual after melting and less common magnesian ones that were still partially molten when disruption occurred. One or more daughter asteroids re-accreted from the remnants of the mantle of the proto-ureilite asteroid. Polymict ureilite meteorites represent regolith that subsequently formed on the surface of a daughter asteroid, including impact-derived material from at least six different meteoritic sources.  相似文献   

16.
The lunar regolith is exposed to irradiation from the solar wind and to bombardment by asteroids, comets and inter-planetary dust. Fragments of projectiles in the lunar regolith can potentially provide a direct measure of the sources of exogenous material being delivered to the Moon. Constraining the temporal flux of their delivery helps to address key questions about the bombardment history of the inner Solar System.Here, we use a revised antiquity calibration (after Eugster et al., 2001) that utilises the ratio of trapped 40Ar/36Ar (‘parentless’ 40Ar derived from radioactive decay of 40K, against solar wind derived 36Ar) to semi-quantitatively calculate the timing of the assembly of the Apollo 16 regolith breccias. We use the trapped 40Ar/36Ar ratios reported by McKay et al. (1986). Our model indicates that the Apollo 16 ancient regolith breccia population was formed between ∼3.8 and 3.4 Ga, consistent with regoliths developed and assembled after the Imbrium basin-forming event at ∼3.85 Ga, and during a time of declining basin-forming impacts. The material contained within the ancient samples potentially provides evidence of impactors delivered to the Moon in the Late-Imbrian epoch. We also find that a young regolith population was assembled, probably by local impacts in the Apollo 16 area, in the Eratosthenian period between ∼2.5 and 2.2 Ga, providing insights to the sources of post-basin bombardment. The ‘soil-like’ regolith breccia population, and the majority of local Apollo 16 soils, were likely closed in the last 2 Ga and, therefore, potentially provide an archive of projectile types in the Eratosthenian and Copernican periods.  相似文献   

17.
Chondritic clast PV1 from the Plainview H-chondrite regolith breccia is a subrounded, 5-mm-diameter unequilibrated chondritic fragment that contains 13 wt% C occurring mainly within irregularly shaped 30-400-μm-size opaque patches. The clast formed from H3 chondrite material as indicated by the mean apparent chondrule diameter (310 μm vs. ∼300 μm in H3 chondrites), the mean Mg-normalized refractory lithophile abundance ratio (1.00 ± 0.09×H), the previously determined O-isotopic composition (Δ17O = 0.66‰ vs. 0.68 ± 0.04‰ in H3 chondrites and 0.73 ± 0.09‰ in H4-6 chondrites), the heterogeneous olivine compositions in grain cores (with a minimum range of Fa1-19), and the presence of glass in some chondrules. Although the clast lacks the fine-grained, ferroan silicate matrix material present in type 3 ordinary chondrites, PV1 contains objects that appear to be recrystallized clumps of matrix material. Similarly, the apparent dearth of radial pyroxene and cryptocrystalline chondrules in PV1 is accounted for by the presence of some recrystallized fragments of these chondrule textural types. All of the chondrules in PV1 are interfused indicating that temperatures must have briefly reached ∼1100°C (the approximate solidus temperature of H-chondrite silicate). The most likely source of this heating was by an impact. Some metal was lost during impact heating as indicated by the moderately low abundance of metallic Fe-Ni in PV1 (∼14 wt%) compared to that in mean H chondrites (∼18 wt%). The carbon enrichment of the clast may have resulted from a second impact event, one involving a cometary projectile, possibly a Jupiter-family comet. As the clast cooled, it experienced hydrothermal alteration at low water/rock ratios as evidenced by the thick rims of ferroan olivine around low-FeO olivine cores. The C-rich chondritic clast was later incorporated into the H-chondrite parent-body regolith and extensively fractured and faulted.  相似文献   

18.
Low concentrations of Th and Fe in the Yamato (Y)-86032 bulk meteorite support earlier suggestions that Y-86032 comes from a region of the moon far distant from the Procellarum KREEP Terrain (PKT), probably from the lunar farside. 39Ar–40Ar, Rb–Sr, Sm–Nd, and Sm-isotopic studies characterize the chronology of Y-86032 and its precursors in the mega regolith. One of the rock types present in a light gray breccia lithology is an anorthosite characterized by plagioclase with An 93, i.e., more sodic than lunar FANs, but with very low 87Rb/86Sr and 87Sr/86Sr similar to those of FANs. (FAN stands for Ferroan Anorthosite). This “An93 anorthosite” has Nd-isotopic systematics similar to those of nearside norites. A FAN-like “An97 anorthosite” is present in a second light-colored feldspathic breccia clast and has a more negative εNd value consistent with residence in a LREE-enriched environment as would be provided by an early plagioclase flotation crust on the Lunar Magma Ocean (LMO). This result contrasts with generally positive values of εNd for Apollo 16 FANs suggesting the possibility of assymetric development of the LMO. Other possible explanations for the dichotomy in εNd values are advanced in the text. The Y-86032 protolith formed at least 4.43 ± 0.03 Ga ago as determined from a Sm–Nd isochron for mineral fragments from the breccia clast composed predominantly of An93 anorthosite and a second clast of more varied composition. We interpret the mineral fragments as being predominatly from a cogenetic rock suite. An 39Ar–40Ar age of 4.36–4.41 ± 0.035 Ga for a third clast composed predominantly of An97 anorthosite supports an old age for the protolith. Initial 143Nd/144Nd in that clast was −0.64 ± 0.13 ε-units below 143Nd/144Nd in reservoirs having chondritic Sm/Nd ratios, consistent with prior fractionation of mafic cumulates from the LMO. A maximum in the 39Ar–40Ar age spectrum of 4.23 ± 0.03 Ga for a second sample of the same feldspathic breccia clast probably reflects some diffusive 40Ar loss. Lack of solar wind and lunar atmosphere implanted Ar in the light gray breccia clast allows determination of an 39Ar/40Ar age of 4.10 ± 0.02 Ga, which is interpreted as the time of initial brecciation of this litholgy. After correction for implanted lunar atmosphere 40Ar, impact melt and dark regolith clasts give Ar ages of 3.8 ± 0.1 Ga implying melt formation and final breccia assembly 3.8 Ga ago. Some breccia lithologies were exposed to thermal neutron fluences of 2 × 1015 n/cm2, only about 1% of the fluence experienced by some other lunar highlands meteorites. Other lithologies experienced neutron fluences of 1 × 1015 n/cm2. Thus, Y-86032 spent most of the time following final brecciation deeply buried in the megaregolith. The neutron fluence data are consistent with cosmogenic 38Arcos cosmic ray exposure ages of 10 Ma. Variations among differing lithologies in the amount of several regolith exposure indicators, including cosmogenic noble gas abundances, neutron capture induced variations in Sm isotopic abundances, and Ir contents, are consistent with a period of early (>3.8 Ga ago) lunar regolith exposure, subsequent deep burial at >5 m depth, and ejection from the moon 7–10 Ma ago.  相似文献   

19.
Oxygen isotope and trace element data for 13 samples of the Kaidun chondritic breccia reaffirm the complex polymict nature of this unique meteorite. Bulk Kaidun samples most closely resemble CR chondrites, but the matrix is CI-like. Two separated clasts are CR-like but have some properties that resemble CM, two clasts are enstatite chondrites (one EL and one EH), one clast is an aubrite-like metal-rich impact melt, and one clast is a unique layered olivine-bearing pyroxenite with the isotopic composition of an aubrite. Yet, although each clast resembles a known meteorite group, all deviate in some respect from the norms for those groups. Collectively, Kaidun has sampled materials not yet represented in the world meteorite collections and which greatly extend the definitions of known meteorite groups. Phyllosilicates in Kaidun span a very wide range in composition and vary from clast to clast, suggesting that the aqueous alteration experienced by the clasts predated assembly of the Kaidun parent body.  相似文献   

20.
The majority of the 143 ureilite meteorites are monomict (unbrecciated) ultramafic rocks, which represent the mantle (olivine+low-Ca pyroxene residues and less abundant cumulates) of a partially melted (25–30%), carbon-rich asteroid 125 km in radius. Accumulated petrologic and geochemical studies of these meteorites have led to a picture of a ureilite parent body (UPB) that was stratified in mg#, pyroxene abundance and pyroxene type, due to the pressure dependence of carbon redox control, and which preserved a pre-magmatic heterogeneity in Δ17O. The absence, however, of ureilitic crustal rocks (i.e. basalts) in the meteorite record, leads to significant gaps in our knowledge of the geologic history of the UPB.

Ureilitic breccias provide considerable information that cannot be obtained from the monomict samples, and help to fill in those gaps. Fourteen ureilites are polymict breccias (at least three of which contain solar wind gases) that formed in a regolith. They contain a variety of clast types representing indigenous ureilitic lithologies not known among the monomict samples, as well as several types of non-indigenous impactor materials. In addition, one ureilite (FRO 93008) is a dimict breccia, consisting of two ultramafic lithologies that could not have formed in close proximity on the UPB.

Several feldspathic lithologies representing melts complementary to the monomict ureilite residues or cumulates have been recognized in polymict ureilites. From these lithologies we infer that melt extraction on the UPB was a rapid, fractional process in which trace element and oxygen isotopic equilibrium was not achieved. The majority of melts that reached the surface erupted explosively (due to high contents of CO/CO2) and were lost into space. Thus, it is likely that the UPB never had an extensive basaltic crust. Melts generated at the shallowest depths and late fractionates, in which carbon had largely been consumed by reduction, were the most likely to have been preserved. Our sample of the UPB is limited to depths equivalent to 100 bars pressure or less, but minor augite-bearing feldspathic lithologies and related cumulates may represent melts derived from deeper.

In addition, we infer that the UPB was catastrophically disrupted, while still hot, by an impacting projectile. Meter-sized ejecta from this impact reaccreted into one or more daughter bodies, on which the brecciated ureilites formed. Ureilite meteorites are derived from these offspring, rather than from the UPB. The remnant of the original UPB may consist largely of olivine plus augite, and thus not resemble the majority of ureilites.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号