首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Ammonite-based biostratigraphic schemes for the Lower Cretaceous are fairly well refined across the world, from the standard zonation in the West Mediterranean province to the Boreal and Austral provinces in the northern and southern hemispheres, respectively. However, the lack of radioisotopic ages associated to the fossil-rich, Lower Cretaceous marine successions has hindered the accurate establishment of the numerical ages for the lower boundaries of its several stages (from Berriasian to Albian). Geochronological dating by U–Pb SHRIMP of a tuff layer that occurs within beds belonging to the Holcoptychites neuquensis Zone in the Pilmatué Member of the Agrio Formation in the Austral province (Neuquén Basin, Argentina) has resulted in an absolute age of 130.0 ± 0.6 Ma (2 sigma internal errors only) or 130.0 ± 0.8 Ma (including calibration and decay constant uncertainties). This age is interpreted to represent the time of eruption and thus the timing of the pyroclastic deposit. The H. neuquensis Zone is the equivalent of the A. radiatus Zone in the West Mediterranean province. Therefore, the obtained age is the first numerical data that could help constrain the Hauterivian lower boundary. Indeed, there is reasonable agreement with the latest proposed lower boundary of the Hauterivian at ∼132.9 Ma. On the other hand, the duration recently established for this stage would be hard to reconcile with the stratigraphic record of the entire Hauterivian in the study region (northeastern Neuquén Basin). Therefore, the results of this contribution could also help to assess the extent of the Hauterivian and associated stages.  相似文献   

2.
The 4th Kilian Group meeting (Dijon, France, 30th August 2010) focused on the Aptian and Albian Stages. For the Aptian, a two-fold division of the stage was adopted for the Mediterranean area with a boundary between the Dufrenoyia furcata and Epicheloniceras martini Zones. The main changes to the zonal scheme concern the Lower Aptian with: the introduction of a Deshayesites luppovi Subzone in the upper part of the Deshayesites oglanlensis Zone; the replacement of Deshayesites weissi by Deshayesites forbesi as new index-species of the second interval zone; the introduction of a Roloboceras hambrovi Subzone in the upper part of the D. forbesi Zone; and the subdivision of the D. furcata Zone into the D. furcata and Dufrenoyia dufrenoyi Subzones. For the Albian, the upper part of the Douvilleiceras mammillatum Zone (Lower Albian) is now characterized by a Lyelliceras pseudolyelli Subzone. The main amendments concern the Upper Albian. The base of this substage is defined by the base of the Dipoloceras cristatum Zone. Above it, the Upper Albian zonal scheme comprises in stratigraphic order the Mortoniceras pricei, Mortoniceras inflatum, Mortoniceras fallax, Mortoniceras rostratum, Mortoniceras perinflatum and Arrhaphoceras briacensis Zones.  相似文献   

3.
Sediments of Early Aptian age in Bulgaria can be assigned to four different facies: platform carbonates (Urgonian complex), shallow-water siliciclastics, hemipelagic and flyschoid siliciclastics. The taxonomic analysis of the ammonite faunas of 18 sections from these four different facies resulted in a revision of the existing ammonite zonation scheme so far applied in Bulgaria and adjoining areas. A new biostratigraphic scheme, which bridges the western and eastern Tethys, is thereby proposed for the Lower Aptian of Bulgaria.The Upper Barremian Martelites sarasini Zone is characterized in its upper part by the Pseudocrioceras waagenoides Subzone in the shallow-water sections and by a horizon with Turkmeniceras turkmenicum in the deep-water settings. The Upper Barremian/Lower Aptian boundary is fixed by the first appearance of Paradeshayesites oglanlensis. For the Lower Aptian the following ammonite zones were established (from bottom to top): The Paradeshayesites oglanlensis Zone, the Deshayesites forbesi Zone (= formerly Paradeshayesites weissi Zone) including the Roloboceras hambrovi Subzone in the upper part, the Deshayesites deshayesi Zone including the Paradeshayesites grandis Subzone in the upper part and the Dufrenoyia furcata Zone. The Lower–Middle Aptian boundary has been defined by the appearance of species belonging to the genera Epicheloniceras and Colombiceras.The Lower Aptian ammonite faunas of Bulgaria, allow an interregional correlation with other areas of the Tethyan Realm. The presence of Turkmeniceras in the Upper Barremian enables a correlation with the Transcaspian region, whereas Roloboceras, Koeneniceras and Volgoceratoides found in the middle part of the Lower Aptian are more typical representatives of the ammonite faunas in northern Europe (England, Germany, Volga region).The analysis of the ammonite successions in combination with sedimentological observations enable us to conclude that the marls and marly limestones of the Lower Aptian studied here also cover the interval of the Oceanic Anoxic Event 1a. An interval of thin-laminated clays, rich in organic matter, was identified in the upper part of the D. forbesi Zone (Roloboceras hambrovi Subzone). This interval is characterized by a total lack of benthic faunas.  相似文献   

4.
A revised ammonoid biostratigraphy is presented for the Aptian of NW Africa, Essaouira-Agadir Basin (EAB), Morocco, based on detailed analysis of 5 key sections. A number of bio-events are documented and 26 genus and 43 species fully documented, forming the largest published Aptian ammonite collection made from NW Africa. The section at Tiskatine is documented as the type section, and 8 zones and subzones are defined, of which 5 are new. This work allows correlation of the Aptian of the EAB to the Standard Mediterranean Ammonite Scale (SMAS).Two main hiatuses are identified at the scale of the basin scale: a major one that includes most of the lower Aptian and the base of the upper Aptian and a second one encompass the top of the upper Aptian and the base of the lower Albian. The ammonite fauna displays a clear Tethyan palaeobiogeographic character affected by a fairly high degree of endemism at the genus and species level. The new genus and species Elsaisabellia tiskatinensis is introduced.  相似文献   

5.
A new CA-ID TIMS U–Pb age of 130.39 ± 0.16 Ma is presented here from the Pilmatué Member of the Agrio Formation, lower Hauterivian of the Neuquén Basin in west-central Argentina. This high precision radioisotopic new age, together with the two former ones from the upper Hauterivian Agua de la Mula Member of the Agrio Formation and modern cyclostratigraphic studies in the classical sections of the Mediterranean Province of the Tethys indicate that the Hauterivian Stage spans some 6 Ma, starting ca. 132 Ma and ending ca. 126 Ma. These radioisotopic ages are tied to ammonite biostratigraphy and calcareous nannofossil bioevents and biozones recognized in the Neuquén Basin which in turn are correlated with the Mediterranean standard zones. A new geological time scale for the Valanginian–Hauterivian stages in the Mediterranean region integrating astrochronological and radiochronological data differs with the current official geological time scale which still maintains poorly constraint absolute ages for the Berriasian-Aptian interval.  相似文献   

6.
Land-derived pollen and spores and marine dinoflagellate cysts were extracted from the Jurassic and Cretaceous sediments of the West Tiba-1 borehole, northern Western Desert, Egypt, On the basis of the recovered palynomorphs, of known stratigraphical significance, the following stages were assessed: Bathonian-Oxfordian (Middle-Late Jurassic) and Hauterivian, Aptian-Early Albian, Late Albian-Early Cenomanian, Early Cenomanian and Late Cenomanian (Early-Middle Cretaceous). No palynomorphs diagnostic for the Berriasian, Valanginian and Barremian stages (Early Cretaceous) were depicted. Based on the nature and composition of the identified palynomorph content, five informal palynomorph assemblage zones were recognised. These are: the Gonyaulacysta jurassica-Korystocysta kettonensis Assemblage Zone (PI, Bathonian-Oxfordian), Ephedripites-Aequitriradites verrucosus Assemblage Zone (PII, Hauterivian), Afropollis jardinus-Duplexisporites generalis-Tricolpites Assemblage Zone (PIIl, Aptian-Early Albian), Nyssapollenites-Elaterosporites Assemblage Zone (PIV, Late Albian-Early Cenomanian) and Assemblage Zone PV (Early-Late Cenomanian). The latter zone was differentiated into two subzones, namely the Classopollis brasiliensis-Elaterosporites klaszii Assemblage Subzone (PVa, Early Cenomanian) and Afropollis kahramanensis-Triporates Assemblage Subzone (PVb, Late Cenomanian). The time stratigraphy of the studied interval was revised. The occurrences and types of the dinoflagellate cysts, extracted from the studied succession, reflect a general shallow (shelf) marine pal˦oenvironment.  相似文献   

7.
Fluctuation in calpionellid, foraminiferal, and nannofossil diversity and abundance are documented in two successions located in the eastern part of the Upper Jurassic–Lower Cretaceous carbonate platform of the Southern Carpathian area, Romania. The lower part of the studied sections consists of upper Tithonian–upper Berriasian bioclastic limestones. This age is supported by the presence of the calpionellid assemblages assigned to the Crassicollaria, Calpionella, and Calpionellopsis Zones. Based on biostratigraphical data, a gap was identified within the uppermost Berriasian–base of the upper Valanginian (the interval encompasses the Boissieri, Pertransiensis, Campylotoxum, and lower part of the Verrucosum ammonite Zones). Hence, the upper Tithonian–upper Berriasian bioclastic limestones are overlain by upper Valanginian–lower Hauterivian pelagic limestones (the interval covered by the NK3B and NC4A nannofossil Subzones). A detailed qualitative and semiquantitative analysis of the nannoflora was carried out over this interval. To estimate the surface water fertility conditions, the nannoplankton-based nutrient index (NI) was calculated. The fluctuation pattern of NI allow us to recognize four phases in the investigated interval, as follows: (1) phase I (covering the lower part of the NK3B nannofossil Subzone and the upper part of the Verrucosum ammonite Zone, respectively) is characterized by low values of the NI (below 20%), by the dominance of the genus Nannoconus in the nannofloral assemblages (between 60–70%), and moderate abundance of Watznaueria barnesae (up to 23%), while the high-fertility nannofossils constitute a minor component of the assemblages; (2) phase II (placed in the NK3B nannofossil Subzone, extending from the top of Verrucosum ammonite Zone, up to the lower part of the Furcillata ammonite Zone) is characterized by increase of NI above 30%, a decrease of nannoconids (up to 50% at the top), while Watznaueria barnesae increases in abundance up to 27%. The fertility proxies (Diazomatolithus lehmanii, Zeugrhabdotus erectus, Discorhabdus rotatorius, and Biscutum constans) represent again a minor component of the recorded nannofloras (less than 7% in both sections), but they have an ascending trend; (3) phase III (which encompasses the boundary interval of the NK3B and NC4A nannofossil Subzones, corresponding to the upper part of the Furcillata ammonite Zone) contains higher NI values (over 35%, and up 52% towards the base of this phase), an abrupt nannoconid decrease (down to 20%), higher abundance of Watznaueria barnesae (over 30%), while the fertility nannofossils became an important nannofloral component, jointly amounting to almost 20%; (4) phase IV (identified within the NC4A Nannofossil Zone and corresponding to the boundary interval of the Furcillata and Radiatus ammonite Zones) is characterized by a decrease of NI to 25%, a recovery of the nannoconids up to 40%, a decline in abundance of Watznaueria barnesae to 25%, together with a pronounced drop of fertility taxa, which make together no more than 8%. We assume that maximum of eutrophication in the studied interval from the Southern Carpathians was in the Furcillata ammonite Zone. Notably, within the phases 2 and 3, the morphological changes identified in the benthic foraminiferal assemblages (the predominance of flattened morphologies, together with the presence of conical and trochospiral inflated forms), as well as the occurrence of the Zoophycos trace fossils and pyrite framboids, indicate dysaerobic conditions. In the Southern Carpathians, the late Valanginian–early Hauterivian biogeographical changes are coeval with the initiation of the carbonate platform drowning.  相似文献   

8.
Five successive ammonite assemblages are distinguished in the basal part (Riasanites rjasanensis Zone s. l.) of the Ryazanian Stage of the East European platform. These are (from the base upward) (1) Hectoroceras tolijense; (2) Hectoroceras kochi; (3) Riasanites swistowianus; (4) Riasanites rjasanensis; and (5) Transcaspiites transfigurabilis assemblages. Two lower assemblages consist entirely of boreal taxa, which occur in association with diverse ammonites of the Tethyan origin higher in the section. The data obtained show that three upper assemblages are correlative with the Berriasian Dalmasiceras tauricum, Riasanites rjasanensis-Spiticeras cautleyi, and Euthymiceras euthymi subzones of the northern Caucasus. The succession of five–six ammonite assemblages established in the East European platform above the top of the Craspedites nodiger Zone may correspond to the same number of ammonite assemblages characterizing lower subzones of the standard Berriasian. Berriasella rulevae Mitta, sp. nov. from the upper part of the Riasanites rjasanensis Zone (transfigurabilis biohorizon) is described.  相似文献   

9.
10.
江苏白垩纪孢粉组合序列   总被引:9,自引:5,他引:4  
根据近年来获得的孢粉化石材料和前人资料 ,建立了江苏白垩纪的孢粉组合序列 ,它们是 :  1)贝里阿斯期至凡兰吟期 (Berriasian— Valanginian)的 Schizaeoisporites- Classopollis annulatus- Ginkgocycadophytus nitidus组合 (云合山组 ) ;  2 )阿普特期至阿尔必期 (Aptian— Albian )的 Cicatricosisporites- Classopollis annulatus-Psilatricolpites组合 (葛村组 ) ;  3)土伦期 (Turonian )的 Schizaeoisporites- Polycingulatisporites- Cycadopites-Cranwellia组合 (浦口组 ) ;  4)科尼亚克期至桑顿期 (Coniacian— Santonian)的 Schizaeoisporites- Classopolisannulatus- Lytharites组合 (赤山组 ) ;  5 )坎潘期 (Campanian )的 Schizaeoisporites- Tricolporopollenitesmicrocirculatus- Betpakdalina组合 (泰州组下部 ) ;  6 )马斯特里赫特期 (Maastrichtian)的 Pterisisporites-Exesipollenites- K urtzipites组合 (泰州组上部 ) ; 欧特里沃期至巴列姆期 (Hauterivian— Barremian)和塞诺曼期(Cenom ainan)的暂缺。  相似文献   

11.
《Cretaceous Research》2008,29(1):9-26
An analysis of the stratigraphic distribution of ammonite faunas collected from several sections in the Essaouira-Agadir area (western High Atlas, Morocco) has enabled the establishment of a detailed succession of assemblages for the uppermost Hauterivian to lower Upper Barremian interval. All Mediterranean standard zones of this interval have been identified. The correlation potential of bioevents which define and characterise these units is discussed. Two significant regional hiatuses, one at the Hauterivian/Barremian boundary, the other involving the lower part of the Kotetishvilia nicklesi Zone, are related to third-order sea level falls. Moreover, the upper part of the succession corresponding to the upper Toxancyloceras vandenheckii Zone and the entire Heinzia sartousiana Zone is markedly condensed. The taxonomic composition of the ammonite assemblage reveals a strong Mediterranean character, yet, it shows some peculiar features as well.  相似文献   

12.
黑龙江省东部中侏罗世至早白垩世沟鞭藻组合序列   总被引:5,自引:0,他引:5  
祝幼华  何承全 《地层学杂志》2003,27(4):282-288,T001
对近二十年来黑龙江省东部海相侏罗纪—白垩纪沟鞭藻地层资料进行了综合研究 ,首次为该地区建立起侏罗纪—白垩纪沟鞭藻地层序列 ,主要包含 7个组合带 (含 3个高峰带 ) ,其中绥滨地区 Callovian— Valanginian期有 4个带 ;鸡西盆地早白垩世也有 4个带 (其中包括与绥滨地区早白垩世早期同时异相的一个 )。它们自下而上为 :1)绥滨组的 Pareodinia ceratophora- N annoceratopsispellucida组合带 ;  2 )东荣组下部的 Gonyaulacysta jurassica组合带 (高峰带 ) ;  3)东荣组上部的 Amphorula delicata组合带 ;  4 )东荣组最上部的海相 Oligosphaeridium pul-cherrimum组合带 (高峰带 )或鸡西盆地滴道组的微咸水—半咸水的 Vesperopsis didaoensis- L agenorhytis granoru-gosa组合带 ,两者为同时异相关系 ;  5 )城子河组下部海相层的 Odontochitina operculata- Muderongia tetracantha组合带 (该带可进一步划分出 2个亚组合带 ) ;  6 )城子河组上部海相层的 Canningia reticulata组合带 ;  7)穆棱组下段的 Cribroperidinium ?parorthoceras组合带 (高峰带 )。  相似文献   

13.
The most complete Hungarian Valanginian perisphinctid ammonite fauna of the Mecsek Mountains (South Hungary) consists of 14 species is reported. Thurmanniceras sp. aff. otopeta, Fuhriella michaelis, F. cf. hoheneggeri, Sarasinella cf. ambigua, Neocomites (Neocomites) subtenuis, Neocomites (Eristavites) platycostatus are reported for the first time from Hungary. The fauna comprises 23 ammonite species and is reported from Valanginian tuffaceous marl, alternating marl–limestone beds and loose limestone blocks. Two studied sections represent the Lower Valanginian Thurmanniceras pertransiens and partly the Busnardoites campylotoxus Zones while ammonites from loose blocks indicate the latter and possibly the Upper Valanginian Saynoceras verrucosum Zone. Variations in the faunal composition of the marl beds and the limestone blocks respectively, refer to the contrast between the ammonite ecological demands. Phylloceratid and lytoceratid ammonites prevail the marl beds, while olcostephanid and neocomitid ammonites prevail the shallower platform-like limestones. Sediment accumulation rate in that palaeo volcano related environment was high and bottom currents frequently washed together ammonite shells or filled their body chambers with smaller ammonite shell fragments. Due to the fast sedimentation the sections represent only partially the recognized ammonite zones therefore long-term or even infra-regional correlation was not possible. Palaeobiogeographically, the ammonite fauna has Mediterranean character and it shows close relationships to the Valanginian faunas of the Bakony Mts. (Hungary), Western Carpathians (Slovakia), Northern Calcareous Alps (Austria), and SE Spain. The presence of Fuhriella species is remarkable and enlarges our knowledge on the distribution of this enigmatic ammonite taxon adding new data to its Valanginian stratigraphic position and geographic distribution.  相似文献   

14.
Mathesia darderi, a slender cylindrical monopleurid genus, formerly documented from the late Aptian-Albian of Spain, France, Tunisia, Algeria, Egypt and Turkey, has been discovered in the upper Barremian and the lower Aptian of Bulgaria and Spain. Notwithstanding some morphological changes, Barremian-lower Aptian forms and those of the upper Aptian-Albian possess the same myocardinal organisation and the same microstructural attributes. The inner shell margin of the right valve displays scalloped, festooned, tubular and vermiform microstructures. The most prominent evolutionary trait of M. darderi is the increase in body size through time. A statistical analysis of size distributions show that populations of the late Barremian-early Aptian, and the late Aptian, and those of the early to middle Albian, are significantly different; a pattern which has a biostratigraphic potential. Ecological changes through time are expressed by a displacement of communities from the central/distal part, to the proximal part of carbonate platforms. M. darderi is present locally in the upper Barremian-lower Aptian, and has its major spreading over the European and Arabo-African margins of the Mediterranean Tethys during the Clansayesian-lower to middle Albian. The disappearance of the species at the Middle-Upper Albian boundary, correlates with a critical, spatial reduction of carbonate platforms.  相似文献   

15.
This work is a study of the ammonite record of a new stratigraphic section of Aptian age, at the Mina Texali (Puebla State, Central Mexico). A detailed biostratigraphic analysis was carried out on 309 specimens systematically sampled on a bed-by-bed basis. An Aptian ammonite zonation is proposed for the Mina Texali (= MT) section with two interval zones, Dufrenoyia justinae and Caseyella sp., and one informal biostratigraphic unit represented by the Huastecoceras trispinosoides beds. We also analyze the taxonomic composition, paleoecology and some systematic issues of the ammonite record of the MT section. The first record in Mexico of the genera Pseudosaynella, Xerticeras and the nautiloid Heminautilus is identified in this section. The ammonite assemblage is assigned to the proximal part of the outer neritic region of the continental shelf. The ammonite record of the studied section is diagnostic in establishing the lower-upper Aptian transition, and the local zonation of the MT provides important data for the development of an Aptian standard ammonite zonation for the Central Atlantic province.  相似文献   

16.
In the Guaniguanico Mountains of western Cuba, the Late Jurassic–Early Cretaceous limestones occur in three stratigraphic successions, which have accumulated along the proto-Caribbean margin of North America. The Late Jurassic subsidence and shallow-water carbonate deposition of the Guaniguanico successions have no counterpart on the northeastern Maya block, but some distant similarities with the southeastern Gulf of Mexico may exist. Four facies types have been distinguished in the Tithonian–Lower Valanginian deposits of the Guaniguanico tectonic units. Drowning of the Late Jurassic carbonate bank of the Sierra de los Organos occurred at the Kimmeridgian/Tithonian boundary. During this boundary interval, sedimentation in the west Cuban area and southwestern margin of the Maya block (Mexico) has evolved in a similar way in response to a major second-order transgression.The Lower Tithonian ammonite assemblages of the Guaniguanico successions indicate, in general, the neritic zone. Presence of juvenile gastropods and lack of adult specimens suggest unfavorable environment for these molluscs, probably related to low oxygenation levels. The Early Tithonian transgressive phase terminated about the lower boundary of the Chitinoidella Zone. The Late Tithonian “regressive” phase is weakly marked, whereas the latest Tithonian–earliest Berriasian strata were deposited during a deepening phase. The latter transgressive phase has ended in the Late Berriasian Oblonga Subzone. We correlate the bioturbated pelagic biomicrites of the Tumbitas Member of the Guasasa Formation with a significant fall of the sea level during the latest Berriasian–Early Valanginian. The average sedimentation rate for the Tumbitas Member biomicrites was about three times faster than for the Berriasian Tumbadero Member limestones. Sedimentation rates for the Tumbitas Member and the Valanginian limestones at the DSDP Site 535 in the southeastern Gulf of Mexico were similar. In the Los Organos succession, the Late Valanginian transgressive interval is associated with radiolarian limestones and black chert interbeds in the lower part of the Pons Formation. In the Southern Rosario succession, the pelagic limestones pass into the radiolarian cherts of the Santa Teresa Formation indicating a proximity of CCD during Late Valanginian–Hauterivian times.  相似文献   

17.
Late Barremian ammonite fauna from the epipelagic marlstone and marly limestone interbeds of Boljetin Hill (Boljetinsko Brdo) of Danubic Unit (eastern Serbia) is described. The ammonite fauna includes representatives of three suborders (Phylloceratina, Lytoceratina and Ancyloceratina), specifically Hypophylloceras danubiense n. sp., Lepeniceras lepense Rabrenović, Holcophylloceras avrami n. sp., Phyllopachyceras baborense (Coquand), Phyllopachyceras petkovici n. sp., Phyllopachyceras eichwaldi eichwaldi (Karakash), Phyllopachyceras ectocostatum Drushchits, Protetragonites crebrisulcatus (Uhlig), Macroscaphites perforatus Avram, Acantholytoceras cf. subcirculare (Avram), Dissimilites cf. trinodosus (d'Orbigny) and Argvethites? sp. The taxonomic composition and percent abundance of the identified ammonites indicate that their taxa are predominantly confined to the Tethyan realm. Ammonites with smooth and slightly sculptured shells predominate among the studied fauna. The ammonite-bearing succession from Boljetin represents the lower part of the Upper Barremian, ranging in ammonite zonation from the Toxancyloceras vandenheckei Zone to the lower part of the Imerites giraudi Zone. The associated organic-walled dinoflagellate cysts confirm the Late Barremian age of the ammonite-bearing levels.  相似文献   

18.
《Cretaceous Research》1995,16(5):539-558
The Cretaceous sedimentary successions of the Ionian Zone, Hellenides, western Greece, are composed of pelagic limestones intercalated with cherty layers. The micritic and biomicritic beds with abundant chert nodules and cherty horizons, which were deposited during late Tithonian to early Santonian times, belong to the Vigla Limestone Formation, while the sediments deposited during the late Santonian to Maastrichtian, formed clastic limestone beds in which chert nodules also occur sparsely.In the Cretaceous beds calpionellids, planktonic and benthonic foraminifera characteristics of the Tethyan realm, and radiolaria have been recorded. The calpionellids, together with radiolaria, colonized the entire basin during the Berriasian to early Valanginian, the latter becoming dominant during the Hauterivian to early Albian as a result of anoxia. Planktonic foraminifera first appeared in the basin during the late Albian and persisted until the Maastrichtian. The numbers decreased, however, during the Cenomanian-early Turonian interval, when radiolaria increased owing to anoxic conditions, and during the Campanian-Maastrichtian interval because the basin became shallow. During this interval larger benthonic foraminifera colonized the basin. Zonal markers have been recognized in calpionellid and planktonic foraminiferal assemblages on the basis of which two calpionellid zones are distinguished, viz. the Calpionella alpina and Calpionellopsis Zones (Berriasian-early Valanginian) along with seven planktonic foraminiferal zones, viz. the Rotalipora ticinensis, Rotalipora appenninica (late Albian), Rotalipora brotzeni (early Cenomanian), Helvetoglobotruncana helvetica (early to middle Turonian), Marginotruncana sigali(late Turonian to early Coniacian), Dicarinella concavata (late Coniacian to early Santonian) and Dicarinella asymetrica (late early-late Santonian) Zones.The anoxic conditions that prevailed in the Ionian basin during the Barremian-early Albian, Cenomanian-early Turonian and Coniacian-Santonian intervals probably arose as a result of (a) the accumulation of large amounts of organic matter because the palaeotopography of the basin periodically hindered the circulation of water from the ocean and (b) the oxygen content of the intruding oceanic waters was low.  相似文献   

19.
The Lower Cretaceous ammonite fauna of Japan was influenced by the Tethyan, Boreal and North Pacific realms with their oceanic current patterns and ammonite distributions. The hypothesis of oceanic circulation can be utilized to interpret the existence of the “Bering Strait” and the changing position of the “Boreal front,” that is the contact region of warm and cold-water masses. To understand such a system fully, a comprehensive understanding of the geographical distribution of ammonite faunas is required. The occurrence of twenty-five ammonite species, belonging to twenty genera, is confirmed in the Barremian to Albian of Japan. Of these, 24 species are described in this paper, including Barremites macroumbilicus sp. nov. The fauna can be divided into three associations, lower, middle, and upper, indicating late Barremian, late Aptian, and late Albian of the European standard zonation. The faunal characters suggest that the habitats of these ammonite faunas may have changed during later Early Cretaceous, with faunas characterizing three different environments, i.e., nearshore, intermediate, and distal shelf to upper slope setting. Ammonites of the lower association (late Barremian) are related to those of the Tethys, Boreal European, and circum-Pacific regions, and suggest that the Early Cretaceous Katsuuragawa Basin was deposited under the influence of currents from both high latitude and equatorial areas. The occurrence of Crioceratites (Paracrioceras) suggests that the Boreal European elements, including Simbirskites and Crioceratites (Paracrioceras), transited between Northwest Europe and Japan through the Arctic Sea, indicating that the Pacific Ocean was connected with the Arctic Sea at that time. The second association (late Aptian) is composed of ammonites of the Tethyan and circum-Pacific regions. As European Boreal ammonite taxa are absent in this association, it is concluded that the Pacific Ocean probably was not connected with the Arctic Sea at the time. Consequently, the “Boreal Front,” marking the contact between warm and cold water masses, was located at mid-latitude in the “Bering Strait” region during Barremian and subsequently moved northward during Albian. The uppermost ammonite association (late Albian) also consists of Tethyan and circum-Pacific taxa. Desmoceras (Pseudouhligella) poronaicum expanded its range with northward and eastward circulation of oceanic currents, suggesting the current must have represented a warm water-mass from the equator. The species subsequently migrated from the southern Katsuuragawa Basin to the Hokkaido area during late to latest Albian.  相似文献   

20.
H.G. Owen   《Cretaceous Research》2007,28(6):921-938
The ammonite biostratigraphy of the 279.35 m of sediments of mid-Late Albian–Early Albian age traversed by the Kirchrode II (1/94) boring is described. The borehole was drilled in the Hermann-Löns Park, Kirchrode (Hannover), northwest Germany, in the central region of the Lower Saxony sedimentary basin. The core commenced within the Kirchrode Mergel Member of the Gault Formation in sediments of Callihoplites auritus Subzone age and showed a Late Albian ammonite zonal succession similar to that previously described by Wiedmann and Owen from the lower part of the nearby Kirchrode I (1/91) core, with which it is correlated. The thick underlying clay sediments of the Minimus Ton Member (Middle Albian–late Early Albian) provided a relatively sparse ammonite fauna. In the Middle Albian part of the sediment succession, several hiatuses are present and only sediments of the lower Euhoplites loricatus Zone (Anahoplites intermedius Subzone) and the Hoplites dentatus Zone (Hoplites spathi Subzone) have been identified. This is followed downward by a thick sedimentary succession through the upper part of the Early Albian Douvilleiceras mammillatum Superzone (Otohoplites auritiformis Zone). Earlier mammillatum and perhaps latest Leymeriella tardefurcata Zone portions of the core straddling the Minimus Ton/Schwicheldt Ton boundary, did not yield ammonites. The underlying sediments at the top of the Schwicheldt Ton Member, consist of dark clays and mudstones with a good representation of the Leymeriella (Neoleymeriella) regularis Subzone and the uppermost part of the Leymeriella acuticostata Subzone (Leymeriella tardefurcata Zone). Of particular importance is the succession through the sediments of the L. (N.) regularis Subzone, hitherto poorly known in north Germany. A brief comparison and correlation is made with other surface and borehole sections in northern Germany and elsewhere. The Boreal and more cosmopolitan Tethyan elements of the fauna are indicated and discussed. An appendix of ammonites obtained from the Mittellandkanal section at Misburg of latest Albian, Arraphoceras (Praeschloenbachia) briacensis Subzone age, completes the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号