首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
大直径钢管桩土塞效应的判断和沉桩过程分析   总被引:5,自引:0,他引:5  
港口工程和海洋工程中出现了越来越多的大直径超长钢管桩。由于这种桩直径较大,土塞的形成对桩的可打入性和承载力有较大的影响。鉴于此,根据大直径和超大直径钢管桩土塞性状的特殊性,考虑了桩直径对侧壁摩阻力、端阻力的影响,引入了尺寸效应系数,重新建立了土塞微分体的静力平衡方程,提出了采用改进的静力平衡法进行土塞效应判断,同时采用波动方程法近似模拟土塞与桩管内壁的相互作用,建立了简化的土塞与桩壁相互作用模型,并用该方法进行实际工程的打桩分析,分析结果表明该方法对土塞效应的判断、打桩过程的预测等与工程实测数据吻合较好。  相似文献   

2.
大直径超长桩的可打入分析是海洋平台打桩施工顺利进行的重要保障,土塞是否闭合的判断对于桩基可打入性分析具有较大的影响,因此,合理准确的土塞判断结果对提高桩的可打入分析的准确性具有重要的意义。以现场静力触探(CPTU)试验数据为依据,采用孔扩张理论推导了基于CPTU测试结果的桩端土的极限承载力计算公式;在求解桩端土体承载力时考虑了管桩与土体的刚度差异,同时考虑到打桩过程中的土体扰动。采用Randolph推荐的方法得到了土塞阻力,将两者进行比较,进而判断土塞的状态。通过实际工程的实测数据,对各个土层的土塞状况进行了判别,并根据判别情况采用波动方程的方法对桩基的可打入性进行了分析,将预测结果和现场的打桩记录进行了比较。计算结果显示,提出的方法与实测结果更为接近,有效地提高了桩的可打入性的预测精度。  相似文献   

3.
Long steel piles with large diameters have been more widely used in the field of ocean engineering.Owing to the pile with a large diameter,soil plug development during pile driving has great influences on pile driveability and beating capacity.The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service.This paper addresses the former aspect.A numerical procedure for soil plng effect prediction and pile driveability analysis is proposed and described.By taking into consideration of the pile dimension effect on side and tip resistance,this approach introduces a dimensional coefficient to the conventional static equilibrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction.At the same time,this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soft ping and pile inner wall.The proposed approach has been applied in practical engineering analyses.Results show that the calculated plug effect and pile driveability based on the proposed approach agree well with the observed data.  相似文献   

4.
土体疲劳对打桩分析的影响   总被引:1,自引:0,他引:1  
在动力沉桩过程中,桩长时间连续运动导致桩侧土体强度的降低,使土体产生疲劳效应。结合一维应力波动理论,桩土相互作用模型和土体疲劳的不同计算方法,编制计算软件,对渤海某油田采油平台的桩基工程进行打桩分析,预测沉桩过程所需的锤击数、桩周土静阻力以及桩的极限承载力。比较不同的桩侧土体疲劳计算模式的分析结果,并用工程实测数据验证计算值。为工程设计和施工提供参考。  相似文献   

5.
Abstract

An experimental study of the performance of concrete pipe piles during installation under different penetration speeds and static load tests on the piles in sand is presented. The applied jacking force, the amount of pile penetration, length of soil plug formed and ultimate bearing capacity were measured during the model tests. The results showed that the concrete pipe piles were partially plugged and the behavior of the soil plug was significantly affected by the penetration speed. The lower the penetration speed, the larger the soil plug formed which in turn leads to a greater ultimate bearing capacity. The size of soil plug can be evaluated by the m value defined as the ratio of the volume of the soil plug to that of the penetrated pile wall. The relationship between the m value and the penetration speeds can be used to estimate the amount of soil plug and the depth of penetration for an open-ended concrete pipe pile jacked into sand.  相似文献   

6.
Abstract

Open‐pipe piles are widely used for offshore structures. During the initial stage of installation, soil enters the pile at a rate equal to the pile penetration. As penetration continues, the inner soil cylinder may develop sufficient frictional resistance to prevent further soil intrusion, causing the pile to become plugged. The open‐ended pile then assumes the penetration characteristics of a closed‐ended pile. The mode of pile penetration significantly alters the soil‐pile interaction during and after installation. This affects the ultimate static bearing capacity (mainly in granular materials), the time‐dependent pile capacity (in clays), and the dynamic behavior and analysis of the piles.

Following a summary demonstrating the effects of pile plugging, a review of the common view of offshore pile plugging is undertaken. The interpretation of plugging by referring to the average plug length has led to the erroneous conclusion that in most piles significant plugging action does not occur.

Establishment of an analogy between soil samplers and open‐ended piles enabled correct identification of plugging by referring to the incremental changes in plug length. Examination of case histories of plugging of offshore piles revealed that beyond a certain penetration depth‐to‐diameter ratio, most piles are plugged.  相似文献   

7.
This study has evaluated the vertical bearing capacity by conducting static load tests for noise-free and vibration-free screw pretensioned spun high-strength concrete (PHC) piles installed using two different methods (end-squirting shoe and pre-boring methods). Vertical bearing capacity differences seem to occur due to the displacement of soils near the external circumference of a pile, depending on the installation method. A method by which to evaluate the bearing capacity of screw concrete piles is suggested by considering the equations that already have been used to calculate the bearing capacity of piles. Based on static load tests and analysis, the pile installed using the end-squirting shoe method was assumed to be a bored pile and it was reasonable to use the equation proposed by the Japanese Geotechnical Society. At the same time, the pile installed using the pre-boring method was deemed a low soil displacement pile and so it was reasonable to apply the equations proposed for calculating the bearing capacity of the driven pile suggested by the Architectural Institute of Japan.  相似文献   

8.
一种新型钢管桩预装荷载箱法被研发出用于自平衡法海上风电钢管桩基检测试验,并通过现场自平衡试验研究探究了海上打入桩桩基础特性。该方法首次成功应用于海外某海上风电场直径1.4 m的超长大直径钢管桩承载力检测,用于探究其承载特性和桩侧桩端阻力发挥规律。现场试验显示,该新型检测方法达到了预期的测试效果和经济效益,与现有钢管桩自平衡法相比,对土的影响更小,可靠度更高,为类似土层和直径的超长钢管桩承载力试验提供了新的途径。  相似文献   

9.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   

10.
桩基础是我国海上风电工程中应用最为广泛的基础形式,其中嵌岩桩因其施工难度大,承载力高备受关注。与其他类型的桩基础不同,嵌岩桩的水平承载力不仅受到围岩强度的影响,更与其成桩质量与灌浆材料的强度相关。采用有限元方法分析了嵌岩深度、桩基直径与壁厚、桩身倾斜度等多种因素对嵌岩桩水平承载力的影响,提出了确定嵌岩桩水平极限抗力的标准。研究表明:桩与围岩间的灌浆环会先于桩身发生破坏,因此可将灌浆环受拉破坏作为判断嵌岩桩达到水平极限承载力的标准;桩身倾斜度对嵌岩桩的水平极限承载力影响较大,直径和壁厚的增加,均能提高桩基的水平承载力。  相似文献   

11.
Drilled displacement (DD) piles with a screw-shaped shaft (referred to as DD piles) are installed using a continuous full thread hollow rod (without a displacement body) inserted and advanced in the soil by both a vertical force and a torque. As a type of newly developed pile, current understanding of the bearing mechanism of DD piles is unsatisfactory, which restricts their further applications in engineering. The primary aim of this paper is to study the bearing mechanism of this type of pile using a numerical method. First, a numerical model for calculating the bearing capacity of the DD piles was created and validated by a laboratory test. Then, the effects of the parameters of pile–soil interface, soil strength, and pile geometrical parameters on the bearing mechanism of the DD piles were investigated in parametric studies. The results of parametric studies show that the limit shear stress on the pile–soil interface, the friction angle of surrounding sand, screw pitch, and thread width significantly influence the bearing capacity of the DD piles, whereas the friction coefficient at the pile–soil interface and the thread thickness have little effect. Based on the results of the parametric studies, the failure mechanism of the DD piles under vertical load is analyzed. Finally, an equation for predicting the ultimate bearing capacities of helical piles based on cylindrical shear failure was used for estimating the bearing capacity of the DD piles, and the calculated results were verified with the numerical results.  相似文献   

12.
Abstract

In this article, the drivability of stepped and tapered offshore piles with the same length and volume has been investigated under hammer blows. To justify the obtained results from field testing and numerical methods, this pile driving procedure has been analyzed and discussed with wave propagation mechanism. It will be shown that tapered pile can be confidently idealized as a number of prismatic segments connected rigidly to each other. This is an interesting finding that fully tapered or stepped piles have a better performance in pile driving and enable users to apply simple one dimensional numerical analysis for simulating pile drivability.  相似文献   

13.
Piling procedure may disturb the surrounding soil, due to the installation particularly for cast-in-place piles. It causes a reduction in the soil strength parameters and, consequently, pile capacity. To overcome shortcomings and also for improving piles’ capacity, postgrouting as a compensation method is recognized and more developed in recent years. Helical piles, those are used widely in marine and land projects, although, are driven by torque implementation, but soil disturbance is noticed, where number of the helices become up to 3 and more. In this paper, an experimental study program is performed by frustum-confined vessel (FCV) to investigate bearing capacity of model helical piles and also postgrouted cases’ performance. FCV has been used because of its linear distribution of vertical and horizontal stresses from zero at top to maximum at bottom which simulates real field stress conditions. Through experimental study, small-scale helical model piles were made of 4-mm-thick steel plate and have been used with a length of 750?mm. The shaft and helix diameters of model piles have been 32 and 89?mm, respectively. So, the helix-to-shaft ratio (wing ratio) was about 2.8. The helical model piles installed in fine-grained sand as a surrounding soil and then axial loading tests before and after grouting were performed to achieve ultimate pile capacity. Results indicated postgrouting can improve both ratios of toe and frictional soil–pile interactions including upgrading β and Nt factors. In addition, the post grouting phenomena can change the pile geometry due to treated soil bond, resulting better functioning. Therefore, it is a proper method to improve helical piles performance and compensate installation effects in capacity mobilization.  相似文献   

14.
At pesent,it is very popular to estimate pile bearing capacity by use of empirical formula andphysical indexes of soil provided in the design codes for civil construction in China.This paper attempts toapply mechanical indexes of soil and semi-empirical formulas,which are based on soil mechanical theoriesand were summarized and presented by Meyerhof in 1976,to calculate the axial pile bearing capacity.Lo-ading test results of 24 single piles in Tianjin area have been collected and compared with the proposed cal-ulation approach.  相似文献   

15.
海上复杂地质条件下大直径钢管桩时效性试验研究   总被引:1,自引:1,他引:0  
通过对3根海上复杂地质条件下的大直径钢管桩采取高应变初打与不同休止时间复打相结合的试验方法,得到不同休止时间钢管桩承载力、侧阻力及端阻力大小,以此对不同桩侧土及持力层对钢管桩时效性的影响进行了研究。研究结果表明:1)钢管桩承载力时效性现象明显,且随时间增长迅速; 2)钢管桩侧阻力的恢复系数远大于端阻力; 3)桩侧黏性土强度的恢复是钢管桩侧阻力增加的主要原因; 4)砂土层虽提供的侧阻力较大,但其对侧阻力增长的贡献不如黏性土; 5)持力层越硬,端阻力与承载力的恢复性越差。  相似文献   

16.
Large-scale field tests were conducted to study set-up effect in open-ended prestressed high-strength concrete pipe piles jacked into stratified soil. Four open-ended prestressed high-strength concrete pipe piles with 13 and 18 m in embedment depth were fully instrumented with fiber Bragg grating sensors and installed. Several restrike dynamic tests were performed on each test pile, with the time interval from 21.5 to 284 hours after installation. Static loading tests (SLTs) were later performed on each test pile at 408 hours after installation to substantiate the dynamic tests. Changes with time in pile bearing capacity and in the shaft and toe resistances were studied based on the results of the pile tests. The development of shaft resistance set-up in different layers was studied in particular. It was found that set-up effect in the shaft resistance is significant and the toe resistance increment was minor. The overall set-up factor of total bearing capacity was found to range from 0.09 to 0.53, and the set-up effect of friction pile is much larger than the end bearing pile. More significant set-up in shaft resistance was observed in fill and alluvium layer. The dimensionless set-up factor A for shaft resistance in marine deposits ranges from 0.5 to 1.43, and it contributes the most to the shaft resistance as the shaft resistance in marine deposits is higher.  相似文献   

17.
Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient Nc are revealed,and the calculation method of Nc is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section.  相似文献   

18.
桩基础水平向承载力的计算是海洋工程中桩基设计的重要组成部分。论文在搜集了大量平台建设资料的基础上,以现有的桩基水平向承载力的设计计算方法为依据,进行了水平向承载力的可靠度研究。对影响可靠指标的各个因素进行了灵敏度分析。  相似文献   

19.
ABSTRACT

Oil and its derivatives contaminate many soils and not only affect their chemical and biological properties but also their geotechnical properties. As oil contamination may deteriorate the functioning of piles, this paper addresses the effects of oil contamination on soil–pile interactions. Axial compressive bearing capacities of two close-ended, instrumented piles were investigated in different oil-contaminated sand using frustum confining vessel. Three different oils (gasoil, crude oil, and used motor oil) at different contamination levels were considered and using some strain gauges, the toe, shaft, and the net total bearing capacity of piles, as well as load distributions along the pile length, were derived. The results show that the presence of oil between soil particles has considerable adverse effects on bearing capacities of model piles, especially the shaft bearing capacity. The oil viscosity and percentage, as well as the contaminated sand bed thickness around the piles, are the most influential parameters. The higher the oil viscosity and oil content, the lower the values of the piles’ bearing capacities in comparison to the uncontaminated sand. With some modifications on the bearing capacity parameters of CFEM method, a good agreement was observed between measured and calculated bearing capacity values.  相似文献   

20.
Open-ended pipe piles are commonly driven into the seabed to support offshore platforms. This paper presents a case of practical offshore driven pile installation experiences associating with premature refusal. Pile drivability and capacity are analyzed using sufficient driving records. Dynamic loading tests were performed three months after the driving in order to determine the pile capacity after refusal. The test results are detailed in this paper compared with back analysis of measured pile driving records. Empirical equations are provided to predict soil resistance during driving and after setup according to the driving records and dynamic loading tests. Analyzing this practical engineering case is hoped to lead to a better understanding of pile driving, especially when premature refusal occurs. The sufficient details of the engineering data in this paper are also expected to enrich the engineering experience and literature of offshore piles in offshore engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号